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Recent work has shown how information theory extends conventional full-rationality
game theory to allow bounded rational agents. The associated mathematical framework
can be used to solve distributed optimization and control problems. This is done by
translating the distributed problem into an iterated game, where each agent’s mixed
strategy (i.e., its stochastically determined move) sets a different variable of the problem.
So the expected value of the objective function of the distributed problem is determined
by the joint probability distribution across the moves of the agents. The mixed strategies
of the agents are updated from one game iteration to the next so as to converge on a
joint distribution that optimizes that expected value of the objective function. Here a
set of new techniques for this updating is presented. These and older techniques are
then extended to apply to uncountable move spaces. We also present an extension of
the approach to include (in)equality constraints over the underlying variables. Another
contribution is that we how to extend the Monte Carlo version of the approach to cases
where some agents have no Monte Carlo samples for some of their moves, and derive an
“automatic annealing schedule”.

Keywords: Distributed Optimization; Distributed Control; Probability Collectives.

1. Introduction

1.1. Distributed optimization and control with Probability
Collectives

As first described in [1, 2], it turns out that one can translate many of the concepts
from statistical physics, game theory, distributed optimization and distributed con-
trol into one another. This translation is based on the fact that those concepts
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all involve distributed systems in which the random variables are, at any single
instant, statistically independent. (What is coupled is instead the distributions of
those variables.) Using this translation, one can transfer theory and techniques be-
tween those fields, creating a large common mathematics that connects them. This
common mathematics is known as Probability Collectives (PC). Its unifying con-
cern is the set of probability distributions that collectively govern any particular
distributed system, and how to manipulate those distributions to optimize one or
more objective functions. See [3, 4] for earlier, less formal work on this topic.

In this paper we consider the use of PC to solve (potentially constrained) op-
timization and/or control problems. Reflecting the focus of PC on distributed sys-
tems, its use for such problems is particularly appropriate when the variables in the
collective are spread across many physically separated agents with limited inter-
agent communication (e.g., in a distributed design or supply chain application, or
distributed control).

A crucial aspect of PC is that it concerns probabilities ¢ over the underlying (in
general multi-component) variable z, rather than that variable directly. As discussed
below, this means that PC-based algorithms can be implemented for arbitrary types
of (each of the components of the) underlying variable. This aspect of PC also means
associated algorithms automatically provide multiple solutions to the problem.

Working with probabilities has numerous other advantages as well. Typically
the ¢ produced in a PC-based approach will be tightly peaked in certain dimen-
sions, while being broad in other dimensions. This provides sensitivity information
concerning the relative importance to solving the optimization problem of getting
the values of those dimensions precisely correct. Another advantage we get by op-
timizing ¢ is that we can initialize it to a set of broad peaks each centered on a
solution x’ produced by some other optimization algorithm. Then as that initial ¢
gets updated (and thereby hopefully the expected value of the objective gets im-
proved), the set of solutions provided by those other optimization algorithms are
in essence combined, to produce a solution that should be superior to any of them
individually.

An advantage of PC-based approaches particularly relevant to optimization is
that being inherently distributed, PC algorithms can often be implemented on a
parallel computer. An advantage particularly relevant to control problems is that
PC algorithms can, if desired, be used without any modelling assumptions about
the (stochastic) system being controlled. Another advantage for control is that PC
algorithms can work in a Monte-Carlo mode, where there is no knowledge of the
functional form of the control problem. Indeed, there can be noisy components
to the problem that are not governed by the PC algorithm, and the mathematics
justifying the PC approach still holds.

These advantages are discussed in more detail below. First though we review PC.
This review introduces a new motivation of PC, one that provides an “automatic
annealing schedule”. After this we introduce several new PC-based techniques, in-
cluding iterative focusing. We then show explicitly how to extend PC algorithms to
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the case of uncountable move spaces of the players without explicitly delineating
the (infinite) components of q. Some issues that arise in practice when running PC
algorithms are also discussed there.

We also present an extension of PC to include (in)equality constraints over the
underlying variables. Another contribution is showing how to extend the Monte
Carlo version of PC to cases where some agents have no Monte Carlo samples for
some of their moves.

See [5,6,7,8,9,10, 11, 12] for other work on PC, including both software and
hardware experiments. In particular, see [13, 14, 9] for work showing, respectively,
how to use PC to improve Metropolis-Hastings sampling, how to relate it to the
mechanism design work in [15, 4, 16, 17], and how to extend it to continuous move
spaces and time-extended strategies. See [18] for a discussion of how to extend PC
to higher-order graphical models than the simple ones considered here.

In [14] can be found pedagogical examples where there are closed-form solu-
tions for the ¢ produced by an elementary PC optimization algorithm. Also pre-
sented there is a proof that in the infinitesimal limit, many techniques for updating
q become identical; these techniques all become a variant of Evolutionary Game
theory’s replicator dynamics in that limit. See [9] for an explicit formulation of
how to apply PC to scenarios where the underlying variable is the trajectory of
a multi-dimensional variable through time, i.e., to a policy-optimization scenario.
Related connections between game theory, statistical physics, information theory,
and PC are discussed in [2].

See [18] for discussion of the relation of PC to other probability-based approaches
to optimization and control, including [19, 20, 21, 22, 23, 24, 25]. As expounded
there, many of those other approaches can be seen as special cases of PC or of
heuristic attempts to do what PC does formally.

1.2. The Probability Collectives Approach

Broadly speaking, the PC approach to solving optimization/control problems pro-
ceeds as follows. First one maps the provided problem into a multi-agent collective.
In the simplest version of this process one assigns a separate agent of the collec-
tive to determine the value of each of those variables x; € X; in the problem that
is under our control. So for example if the i’th variable can only take on a finite
number of values, those |X;| possible values constitute the possible moves of the
i’th agent.®* From now on, without any loss of generality, for pedagogical simplicity
we assume that all n variables are under our control. (See [8, 9].) The value of the
joint set of n variables (agents) describing the system is then z = [z, -+, 2,] € X
with X £ X7 x --- x X,,.

Unlike many optimization methods, in PC the underlying z is not manipulated
directly. Rather a probability distribution over that variable is manipulated. To

2|S| denotes the number of elements in the set S.
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avoid combinatorial explosions as the number of dimensions of X grows, we must
restrict attention to a low-dimensional subset of the space of all such probability dis-
tributions. We indicate this by writing the distribution over X that we manipulate
as g € Q. The manipulation of that ¢ proceeds through an iterative process. The
ultimate goal of this process is to induce a distribution ¢ that is highly peaked about
the = optimizing the objective function of the problem. That objective function is
typically written as G(x), and is sometimes called the world cost or world utility
function. (In this paper we only consider problems with a single overall objective
function, and we arbitrarily choose lower values to be better, even when using the
term “utility”.) That final ¢ is then used to determine a final answer in X, e.g., by
sampling ¢, evaluating its mode, evaluating its mean (if that is defined), etc.

In this paper, for simplicity we consider the case where Q consists of all product
distributions over the multi-component z € X i.e., g(x) = Hiv=1 qi(z;). Most of the
mathematics goes through for higher order graphical models as well, by using semi-
coordinate transformations to express those models as product distributions in a
different (potentially larger) space. In the interests of space, such transformations
will not be considered here. See [9, 18] for a discussion of such transformations. In
addition, none of the mathematics presented here changes if there is noise in the
system. Most simply, nothing below assumes that all components of z are under
our control; components of x that we do not control constitute noise. See [8].

1.3. Advantages of Probability Collectives

Usually during the optimization of ¢ its support covers all of X i.e., it lies in the
interior of the unit simplices giving Q. Conversely, for our choice of Q, any element
of X can be viewed as a delta function probability distribution, restricted to the
edge (a vertex) of those simplices. So working with X is a special case of working
with @, where one sticks to the vertices of Q. Due to the breadth of the support
of ¢, minimizing over it can also be viewed as a way to allow information from the
value of the objective function at all x € X to be exploited simultaneously. In all
this, broadening the space in which the optimization takes place to Q rather than
X is analogous to interior point methods.

An important advantage of PC-based approaches arises from the fact that ¢ € Q
is a vector with (perhaps an infinite number of) real-valued components. Due to this,
finding the ¢ optimizing the expectation value E,(G) means optimizing a real-valued
function of a real-valued vector. Accordingly, using PC we can leverage the power
of descent schemes for real-valued vector spaces like gradient descent or Newton'’s
method. In particular, we can do this even if X is a categorical, finite space. So
with PC, “gradient descent for categorical variables” is perfectly well-defined.

Yet another advantage, alluded to above, is that by working with distributions
in Q rather than elements of the space X, the same general PC formalism can be
used for essentially any X, be it continuous, discrete, time-extended, mixtures of
these, etc. In all of these cases elements in Q consist of real-valued vectors. Formally,
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those different spaces just correspond to different probability measures, as far as
PC is concerned.P

While prior knowledge or modelling assumptions concerning the problem can be
incorporated into the PC algorithm, they are not required. Nor does the optimiza-
tion require control of all components of z (i.e., some of the components of z can
be noisy, can drop out of our control, etc). Furthermore, when we can sample G(.)
but do not know its functional form, the optimization can be done in a distributed
fashion using Monte Carlo methods. All of this makes PC very broadly applicable.

The remainder of the paper is organized as follows. In section (2), we review
several standard PC-based algorithms for unconstrained optimization, emphasizing
their relationship with information theory and barrier function methods. We also
introduce the new technique of “shrink-wrapping”, which allows Monte Carlo-based
techniques to be used even when some agents have unsampled moves. Next, in sec-
tion (3), we introduce some variants of those standard approaches, and discuss some
heuristics that have proven useful in practice. Section (4) introduces iterative focus-
ing, a new set of PC-based techniques in which ¢ is modified directly, rather than
modified so as to optimize some functional of q. Having introduced this plethora
of techniques, we present a summary of these techniques and discuss some of their
relationships in section (5). Section (6) extends PC to the case where we have con-
straints on X. After this, we show how to extend PC to the case of uncountable
X, in section (7). Finally, section (8) shows how the “trick” of subsampling al-
lows us to modify these techniques to overome the restrictions imposed by product
distributions, while still retaining the distributed nature of the algorithm.

2. Essentials of PC

For the rest of this paper we will consider PC-based algorithms concerned with
finding the distribution that minimizes expected G, argmingeqEq(G). Other PC-
based algorithms instead concern, for example, the ¢ whose mode minimizes G,
argmingeoG(maxgzexq(z)).

2.1. The Mazxent Lagrangian

Say we are given the following problem:
(P1): Find
ming, /dz G(z) qu(l’l)
such that l

b A ccordingly, throughout this paper we will use the integral symbol, with the appropriate measure
assumed. In particular, a point measure is implicitly assumed if the integration variable has a finite
number of values, in which case an integral reduces to a sum.
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qi(wi) > 0 Vi, z;

where each ¢; is a single-dimensional real variable.

In conventional continuous optimization one standard way to solve (P1) is by
replacing the inequality constraints with barrier functions ¢; : R — R each
of which is nowhere negative and which is also infinite for negative values of its
argument [26] . This replaces the inequality constrained problem (P1) with the
following problem having no inequality constraints:

(P2): Find

N
wingy [ [ do G) [t + 3 [ doi pli et
such that Z .

where the non-negative real values u(i,z;) are the barrier parameters. Due to
the nature of the barrier functions, we know that the solution to (P2) must obey the
inequality constraints for any allowed values of the barrier parameters. Enforcing
the equality constraints of (P2) as well guarantees that out ¢ meets all of our
constraints, i.e., is feasible.

Typically with barrier function methods one solves a sequenced of optimization
problems, each of which has fixed barrier parameters. Each such problem starts with
the ¢ produced by the solution to the preceding problem. The difference between two
successive problems is that the barrier parameter has been slightly reduced. As such,
an annealing progresses the barrier parameters disappear and (P2) becomes (P1),
i.e.,our final ¢ is both feasible and (at least locally) solves the minimization over g of
problem (P1). For convex objective functions, this process has certain guarantees of
converging to the global optimum of (P1). (Note though that our objective function,
E,(G), is not a convex function of the components of ¢; due to the fact that ¢ is a
product distribution, E,(G) = [ dx ], ¢i(x;)G(x) is a multinomial function of q.)

One common choice of barrier function is ¢(y) = yln(y) for y > 0, ¢(y) = oo
otherwise. Say we also take p(4, z;) to be independent of x;, so we can write it as the
vector with components {T;}. For this case, when ¢ is normalized (i.e., satisfies the
equality constraints), the operand of the min operator becomes E,(G)—>", T:.5(¢;),
where S(q) is the Shannon entropy of ¢;. If T; is independent of 4, this difference
becomes E,(G) — T'S(¢q). This expression is called the free energy in statistical
physics, if we identify G with the “Hamiltonian” of the system and T with its

¢Formally, for ¢ to be a barrier function, we must add a constant large enough so that ¢ is nowhere
negative, but such a constant is irrelevant for our purposes.
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“temperature”. See [8] for a discussion of the shape of the free energy surface for
product distributions.

Let g7 be the ¢ solving (P2) for some particular vector 7. It is shown in [8]
that if ¢ consists of a single agent, i, then E =, (@) is a monotonically decreasing
function of T;. In addition, typically in practice, even for multiple agents, good
results arise if we anneal through a sequence of diminishing 7. In light of all this,
we here re-interpret (P2) as the following problem:

(P3): Find

N
min{g,y,r [/ dz G(x) [ [ ai(e:) + Z/d% Tip(qi(x:))]
i i=1
such that
/dxi q1($l) =1 VZ',T > 0.

In other words, we treat T as well as ¢ as an independent variable. Of course, we
know that ultimately the solution to (P3) will have all T; = 0. Our starting with
a large value of the components of T' simply reflects the fact that that is an easy
place to start solving (P3), since it is relatively easy to solve for ¢ for large T.

Continuing with our choice of entropic barrier function, we can solve (P3) via
Lagrange parameters in the usual way, getting the Lagrangian

20.T) = Ey(G) = Y Tisa) + YA / d; gs(z:) — 1] (1)

with the obvious extension of the definition of E and S to all of the space of real-
valued possible functions over x. For simplicity from now on we will take all the
T; to be the same. In this case we refer to the expression in Eq. 1, as the Max-
ent Lagrangian. It is just the free energy plus the dot product of the Lagrange
parameter vector with the equality constraint functions.

2.2. Gradient descent of the free energy

Say that T is fixed. In that case the entropy term in the free energy is globally
convex in the remaining free variable, ¢. The E;(G) term in the free energy would
also be convex, if we had only a single agent (in that case E,(G) would be linear
in ¢q.) Accordingly, the free energy would be convex over Q. That is also true of
the equality constraints, no matter how many agents we have. So the full Maxent
Lagrangian would be convex if we had only a single agent, and the usual associated
guarantees about duality gaps, saddle point solutions, etc., would apply. However
for multiple agents E,(G) is not linear in ¢, and we do not have those convexity
guarantees.

For this more general case, the simplest thing to do is an iterative descent of
the free energy over Q, where at every iteration we step in the direction within Q
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that, to first order, maximizes the drop in free energy. Since the step is restricted
to lie within Q, the equality constraints of the Maxent Lagrangian are obeyed
automatically. Expanding, to first order the step that maximizes the drop in .Z is
given by (-1 times)

Vo2 (q) = 1(q)- (2)
In this equation the ¢;(z;) component of the gradient (one for every agent ¢ and
every possible move z; by the agent) is

V02 (@)lgu(or) = % — E, (G| ;) + Tlnlg(x)] 3)
where
B, (G2 = [ dogsle-)Glaia) (1)

A n

with z_; £ [y, 21, @ig1, -+, 2] and q_i(z_;) = Hj:1|_j7£i qj(z;). n(q) is the
vector that needs to be added to V,#(q) to get it back into Q.4 For finite move
spaces, the ¢;(z;) component of 7(q) is independent of z;, and given by

A 1 /
@l 2 57 [ dot (92 @lay o)

where | X;| is the number of possible moves z;. This choice ensures that [ dw;g;(z;) =
1 after the gradient update to the values ¢;(x;). The expression in Eq. 4 is the
expected payoff to agent ¢ when it plays move x;, under the distribution g_; across

the moves of all other agents.

2.3. Monte Carlo-based gradient descent and shrink-wrapping

Eq. 2 gives the (negative of the) change that each agent should make to its dis-
tribution to have them jointly implement a step in steepest descent of the Maxent
Lagrangian. These updates are completely distributed, in the sense that each agent’s
update at time ¢ is independent of any other agents’ update at that time. Typically
at any t each agent i knows ¢;(t) exactly, and therefore knows In[g;(j)]. However
often it will not know G and/or the ¢q_;. In such cases it will not be able to evaluate
the F(G | x; = j) terms in Eq. 2 in closed form.

One way to circumvent this problem is to have those expectation values be
simultaneously estimated by all agents by repeated Monte Carlo sampling of ¢
to produce a set of (x,G(x)) pairs. Those pairs can then be used by each agent
i to estimate the values E(G | z; = j), and therefore how it should update its
distribution. In the simplest version of this scheme such an update to ¢ only occurs
once every L time-steps. Note that only one set of Monte Carlo samples is needed
for all players to determine how to update their mixed strategy, no matter how
many players there are.

dN.b., we do not project onto Q but rather add a vector to get back to it. See [8].
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In this simple Monte Carlo scheme only the samples (z, G(z)) formed within a
block of L successive time-steps are used at the end of that block by the agents
to update their distributions (according to Eq. 2). More sophisticated approaches
modify the G values returned by the Monte Carlo on a player-by-player basis, etc.
[1, 9].

In addition, in general it may be that some agent ¢ has no sample for the value
x;. Some approaches to address this are presented below. These approaches are
fairly elaborate, being explicitly designed to be able to work for uncountable X;.
They are based on “just in time” evaluation of how to update the probability of a
move, together with interpolation to estimate quantities like E(G | z;).

There are a set of simpler approaches, similar to Levenberg-Marquardt descent,
that are particularly appropriate for finite X;. These approaches are known as
shrink-wrapping. We present them here in a slightly more general context than
that of minimizing the free energy.

Recall that N is the total number of agents. Expand the domain of definition of
the free energy from the product of unit simplices Q to the Cartesian product

Q" = x; 4R

= RZ: Xl (6)

Note that @* does not contain all coupled distributions over Q. Rather the extension
is to allow the individual agents’ distributions separately to be non-normalized.
(However if desired the analysis presented below can be extended to allow arbitrary
coupling, in a straightforward way.)

We will use the notation w;(x;) in the obvious way, to refer to the x;’th compo-
nent of the i’th vector in the N-fold Cartesian product of vectors that we will write
as the overall vector 4 € Q*. (An example is where the vector u is just a product
distribution ¢, so that u;(x;) means “g;(z;)”.)

Say we are currently at a point ¥ € Q*. Let ¢ be an infinitesimal vector in Q*
proportional to the gradient of some objective function H(@). As an example, we
can choose to have ¢ be an infinitesimal constant times —E(G | z;) — TIn(g;(x;)),
where z; ranges over all X;. This is (an infinitesimal constant times the negative
of) the gradient of the maxent Lagrangian over the moves of agent 4, not restricted
back to the unit simplex.

Write T to mean the vector in Q* of all 1’s, and J to mean any vector in Q* all of
whose components are non-negative and such that > y Jj > 0, i.e., such that at least
one component J; is positive. Define the Hadamard product Ju by (Jv); £ Jjv; Vj.

Say we take a step from the current «, adding to it

-y o= (DT

1-J

Then as is trivially verified, the new 4 is normalized to sum to 1 if the original one
is. In addition since stepping along ¢’ decreases H to first order, this alternative step
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does as well, decreasing it (to first order) by an amount proportional to

- (X, Jiv)?
ou-v= Jiv? — =L = 8

; 1% Zj Jj ( )
which is non-negative.

In particular, say 4 is a product distribution ¢, and have ¥ be (a small constant
times the negative of) the gradient of H(&). Then the foregoing all holds for the
choice that for all ¢ and associated moves a;, J;(a;) equals 1 iff there is at least one
sample of x; = a; in our Monte Carlo sample, and 0 otherwise. With this choice
we “shrink wrap” the move space of each agent ¢ to only include those moves that
occurred in the Monte Carlo block, and only perform the (normalized back to the
unit simplex) gradient update on the components of ¢ involving the moves in the
shrink-wrapped space. We call this “Heaviside shrink-wrapping”.

The foregoing also holds for the same @ and ¢ for many other choices of J. In
particular, it holds if we take J;(a;) = ¢;(a;) Vi, a;, or the hybrid choice J;(a;) =
gi(a;) Vi that are sampled at least once in our Monte Carlo block, 0 otherwise. The
resulting rules for updating ¢; are similar to the technique of “Nearest Newton”,
introduced blow, with the modification that we “shrink wrap” away unsampled
moves.

2.4. Automated annealing

In the vanilla approach described above, T is fixed until q arrives at a local minimum.
At that point T' is reduced, via an annealing schedule, and the process repeats, with
q again being optimized. ¢ However in light of our formulation (P3), there is no
reason not to do gradient descent in both ¢ and T'.

The partial derivative of the free energy with respect to T is just —S(g). Ac-
cordingly, to first order the maximal drop in the free energy arises if the changes in
T and q are related by

6gi(zi) _ V4Z(q) —nlq)
ST S ®)

Note that by making such updates to T as we make them to g, we will typically not
converge to a local equilibrium ¢ (i.e., one for which V,.Z —n(q) = 6) as quickly
as we would if we did the descent for a fixed T'. In a more conservative approach,
we only update T according to Eq. 9 once we reach such an equilibrium ¢, and
therefore typically reach such an equilibrium more quickly.

In either type of approach, the amount that T gets decreased is an increasing
function of S(gq). Moreover, in general as the optimization progresses, ¢ gets more
peaked about the x that minimize G(z), and therefore S(gq) shrinks. Accordingly,

¢Indeed, simulated annealing can be viewed as a version of such descent, where rather than directly
descend the free energy, one uses a Metropolis-Hastings random walk to sample the equilibrium
solution where V. = 0 for the case of a single agent. See Sec. 2.5 below.
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the amount that T gets decreased shrinks as the optimization progresses. This is
similar to the typical (ad hoc) ways annealing schedules are set in many other
optimization techniques. (Note that if each agent ¢ had its own temperature Tj,
then those T; would get decreased by different amounts at each update; each T;
would shrink by an amount determined by the entropy of i alone.)

In practice, one might want to modify the rule Eq. 9. For example, in Monte
Carlo approaches, we use an estimate of V,.Z that is necessarily somewhat noisy.
(See below.) This will often mean that we anneal more slowly than might otherwise
be the case. In contrast, in some scenarios we can evaluate the terms in V.2
exactly (e.g., by having agents communicate their distributions to one another; see
the KSAT experiments in [18]). In these scenarios the annealing schedule of Eq. 9
should perform better.

The Maxent Lagrangian is not unique; one can motivate other choices of what
functional of ¢ to optimize in order to minimize E4(G). Several of these other
functionals of ¢ are described below. Each of them has its own associated type of
automated annealing. In addition, below we consider descent schemes based on 2nd-
order expansions of the Maxent Lagrangian (i.e., based on Newton’s method). Such
schemes are fairly elaborate even when only descent in ¢ is considered, with T fixed.
Due to these reasons, for pedagogical simplicity here we will not consider automated
annealing further; from now on we will take T to be fixed throughout epochs of
varying lengths, at the end of which T is lowered according to any of the conventional
semi-heuristic schemes. A full discussion of automated annealing, involving other
functionals of ¢ besides the Maxent Lagrangian, 2nd-order expansions, etc., is the
subject of a paper currently in preparation.

2.5. Brouwer updating

It is possible to write down, explicitly, the ¢ that forms the fixed point of gradient
descent of the free energy. Setting V,.Z(q) to zero in Eq. 3 gives the solution

qi(wi) o exp[—Ey_(G | %:)/T] (10)

This is a set of coupled nonlinear equations for the vectors {g;}. Brouwer’s fixed
point theorem guarantees the solution of Eq. 10 exists for any G [2, 1]. Hence
we call update rules based on this equation Brouwer updating. Note that just
like gradient-descent, Brouwer updating also involves the expression E(G | z;).
Accordingly, when that term cannot be evaluated in closed form, it can be estimated
using Monte Carlo techniques, just like in gradient-descent.

In serial Brouwer updating, one agent at a time updates its distribution, jump-
ing to the optimal distribution given by Eq. 10. The order in which the agents
update their distributions can be pre-fixed or random. The order can also be dy-
namically determined in a greedy manner, by choosing which agent to update based
on what associated drop in the Maxent Lagrangian would ensue [1, 14, 10]. (These
various ordering schemes are similar to the those used in the majorization and block
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relaxation techniques in optimization statistics.) Aside from potential effects from
Monte Carlo estimation error, each step of serial Brouwer updating is guaranteed
not to increase the associated (Maxent) Lagrangian.

In parallel Brouwer updating, this updating procedure is followed simulta-
neously by all agents. Accordingly, when Monte Carlo sampling is used, parallel
Brouwer updating can be viewed as a type of learning in games (see [21, 27, 28]).
Now in general, when any g; changes, for every ¢ # j, what distribution ¢; min-
imizes i’s Lagrangian will change, in accord with Eq. 10. This suggests that a
step of parallel Brouwer updating may “thrash”, and have each agent change in a
way that confounds the other agents’ changes. (See [21, 28] and references therein
for analysis of related issues in ficticious play.) In such a case the update may not
actually decrease the associated (Maxent) Lagrangian, unlike with serial Brouwer.

There are many possible ways of addressing this problem. One is to mix parallel
and serial Brouwer updating, so that only subsets of the agents perform parallel
updates at any given time. These can be viewed as management hierarchies, akin
to those in human organizations. Often such hierarchies can also be determined
dynamically, during the updating process. Other ways to address the potential
thrashing problem with parallel Brouwer have each agent ¢ not use the current
value E,+ (G|x;) alone to update ¢f(z;), but rather use a weighted average of all

values eqji(G|xi) for ¢ <'t, with the weights shrinking the further into the past one
goes. This introduces an inertia effect which helps to stabilize the updating. (Indeed,
in the continuum-time limit, this weighting becomes the replicator dynamics [14].)

A similar idea is to have agent i use the current E,« (G|x;) alone, but have it
only move part of the way the parallel Brouwer update recommends. Whether one
moves all the way or only part-way, what agent ¢ is interested in is what distribution
will be optimal for i for the next distributions of the other agents. Accordingly, it
makes sense to have agent ¢ predict, using standard time-series tools, what those
future distributions will be. This amounts to predicting what the next vector of
values of Eg (G|z;) will be, based on seeing how that vector has evolved in the
recent past. See [21] for related ideas.

2.6. Kullback-Leibler based optimization

Note that the barrier function in the Maxent Lagrangian is not continuous at the
border of the feasible region. Moreover, in the language of interior point methods, it
is not self-concordant. A more common choice in the literature for a barrier function
is the (negative of) the logarithm, which is self-concordant. If we use that rather
than the entropic barrier function we get the following Lagrangian

L(q,1,T) = E(G) + Z)\z[/ dz; qi(w;) — 1]

=Y [ ottt e )
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However there are many other ways to motivate the Maxent Lagrangian [8, 9, 2]
besides its derivation in terms of barrier functions. For example, information theory
can be used to argue that essentially any iterative optimization algorithm can, in
the absence of any prior knowledge concerning the algorithm, be modeled as descent
of the Maxent Lagrangian.

Another way to motivate the Maxent Lagrangian is as the minimizer of the
Kullback-Leibler distance from ¢ to a Boltzmann distribution with Hamiltonian G
and temperature 7. To understand this motivation, say that we were not restrict-
ing ourselves to product distributions. So up to the additive normalizing vector
the Lagrangian becomes .Z(p) = B(E,(G) —v)) — S(p), where p can now be any
distribution over x. There is only one local minimum over p of this Lagrangian, the
canonical ensemble:

pﬁ(az) x ¢~ BG(@)

In general p? is not a product distribution. However we can ask what product
distribution is closest to it. Now in general, the proper way to approximate a target
distribution p with a distribution from a subset C of the set of all distributions is
to first specify a misfit measure measuring the distance of each member of C to p,
and then solve for the member with the smallest misfit. This is just as true when C
is the set of all product distributions as when it is any other set.

How best to measure distances between probability distributions is a topic of
ongoing controversy and research [29]. The most common way to do so is with
the infinite limit log likelihood of data being generated by one distribution but
misattributed to have come from the other. This is know as the Kullback-Leibler
distance [30, 31, 32]:

KL(p1 || p2) £ S(p1 || p2) — S(p1) (12)

A

where S(p1 || p2) = — [ dz py (a:)ln[’;f(f))] is known as the cross entropy from p;
to pe (and as usual we implicitly choose uniform g). The KL distance is always

non-negative, and equals zero iff its two arguments are identical.

As shorthand, define the “pq distance” as KL(p || ¢), and the “gp distance” as
KL(q|| p), where p is our target distribution and ¢ is a product distribution. Then
it is straightforward to show that the gp distance from ¢ to target distribution p”
is just the Maxent Lagrangian £ (q), up to irrelevant overall additive constants. In
other words, the ¢ minimizing the Maxent Lagrangian is the same as the product
distribution ¢ having minimal ¢p distance to the associated canonical ensemble.

However the ¢gp distance is the (infinite limit of the negative log of) the likelihood
that distribution p would attribute to data generated by distribution g. It can be
argued that a better measure of how well ¢ approximates p would be based on the
likelihood that q attributes to data generated by p. This is the pg distance; it gives
a different Lagrangian from the Maxent Lagrangian.

Evaluating, up to an overall additive constant (of the canonical distribution’s



December 26, 2006 16:45 WSPC/INSTRUCTION FILE acs.fixed.2

14 Dawvid H. Wolpert

entropy), the pq distance is

KLG’ || q) = Z/Mplmwm

This is rougly equivalent to a scenario where each coordinate i has its own “La-
grangian”

2:0) 2 ~ [ dai (@) (a)] (13)

where pf(ml) is the marginal distribution [ dz_;p®(x). Since ¢ is a product dis-
tribution, the minimizer of the sum of the Lagrangians of each coordinate is just
q; = pi’@ Vi, i.e., each g; is set to the associated marginal distribution of p°.

2.7. Adaptive importance sampling

This subsection shows how to set ¢ to minimize pq distance. It also shows how pq
distance provides a tool to perform second order descent over gp distance.

The most straightforward way to estimate the marginal distribution minimizing
distance to p? is via adaptive importance sampling, where the proposal distribution
is an earlier version of ¢ itself. In other words, first we write ¢ in terms of an earlier
estimate ¢ as follows:

*ﬁG(Ihm—q)
xl /dx—z ~—/) q—l(‘r/—z)
T

¢—BG(")
:/mwf—rux%m—dﬂ

B eI () (i — )
—qxl/dac ][ ]
o5

( i(i)
. G
= qi(z;) 5(7 | ;). (14)

The exactly analogous result holds for higher-order graphical models. See [8].

To estimate the expectation value in Eq. 14 we repeatedly IID sample ¢, getting
a set of z values. For each such = we evaluate e =#%(*) /G(x).f For each of i’s possible
moves, a, we then set our estimate of ¢;(z; = a) to the average of the subset
of those sample values of e~ P%(®) /G(z) for which x; = a. After multiplying this
estimate by ¢;(a) and evaluating for all a, we renormalize those products to get a
proper distribution g;. We then set ¢ to that new ¢ and iterate the process. Variants
of this scheme replace the Boltzmann function e #¢(*) with a different function
that is also biased toward low G values, e.g., ©[K — G(x)]. See the discussion of
iterative focusing below.

fNote that if § is a product distribution, this requires that with each Monte Carlo sample = each
agent ¢ broadcasts ¢;(z;) to a central processor. That processor then forms the product of those
values to evaluate ¢, which is broadcast back out to all the agents.
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B

Note that the optimal solution for g¢; for the pg KL Lagrangian — p; — is
independent of the g_;. This differs from the case for the optimal solution for the gp
KL Lagrangian, given in Eq. 10. However in both the adaptive importance sampling
scheme for the pg KL Lagrangian outlined above, and in steepest descent for the gp
KL Lagrangian, the update rule for ¢; depends on the previous distributions q_;.
See [1].

One potential difficulty with using adaptive importance sampling this way is that
it could lead to big jumps in Q, with attendant instability arising from estimation
error. An alternative approach for minimizing pq distance is to only use the adaptive
importance sampling to provide the information needed to perform steepest descent
on the Lagrangians .%(¢q). More precisely, the steepest descent direction of that
Lagrangian for agent i is given by Eq. 2, only now with the gradient term there
replaced by the gradient of .£*(¢), having components fpf (z4)/qi(z;) (and with
n(q) redefined accordingly). The marginal p; (x;) occuring in this gradient can be
estimated via adaptive importance sampling, just as above. So with such gradient
descent of .Z*(q) we are still using adaptive importance sampling to estimate the
marginal of p®. However now the overall algorithm only take a small step in a
direction determined by that estimate of pi’B .

To illustrate another potential difficulty, say we have some current proposal dis-
tribution ¢ that is used to generate points in X. Then estimating the marginal
of the Boltzmann distribution by averaging the values of pf /G over those points
may be a very poor approach, statistically speaking. In particular, it may be that
Gi(z;)p? (x)/G(z) > 1 for some 2 where §;(x;) > 0. In this case, with non-zero prob-
ability, until the renormalization step our estimate of pf (x;) would be far greater
than 1.

2.8. Nearest Newton

Care must be taken when going to second order descent methods, regardless of what
Lagrangian is used. In particular, the Hessian of .£;*(¢) is diagonal and therefore
trivial to invert. It is also positive-definite. However applying a Newton-Raphson
step with that Hessian, for example, would result in a new ¢ that doesn’t lie on Q.
Moreover, such an update step is independent of p?. Such problems are even more
acute when trying to descend the Maxent Lagrangian, since coupling between the
agents in the multilinear term E(G) makes the associated Hessian non-diagonal.
An alternative approach for second order descent of the Maxent Lagrangian
starts by making a quadratic approximation (over the space of all distributions p,
not just all product distributions ¢) to the Lagrangian, £ (p) based on the current
point pf. Newton’s method then specifies a pt*t! that minimizes that quadratic
approximation. We can then find the product distribution that is nearest (in pg KL
distance) to p'*! and move to that product distribution. The resultant update rule



December 26, 2006 16:45 WSPC/INSTRUCTION FILE acs.fixed.2

16  David H. Wolpert

for the Maxent Lagrangian is called Nearest Newton descent [8]:

¢t (j)
qi(4)

=1— S(q;) —In(gf (4))
— BlEq (G | i = j) — Eqe(G)] (15)

where ¢! is the current (assumed to be product) distribution. The conditional expec-
tations in Nearest Newton are the same as those in gradient descent. Accordingly,
they too can be estimated via Monte Carlo sampling, if need be.

In [14] it is shown that in the continuum time limit, Nearest Newton updating
for modifying the probability distribution of any particular agent becomes a variant
of replicator dynamics (with the different strategies of replicator dynamics identi-
fied with the different possible moves of the agent performing the Nearest Newton
update). That paper also shows that that when the terms in that continuum limit
version of Nearest Newton are Monte-Carlo estimated, Nearest Newton becomes
a version of ficticious play. More precisely, it becomes identical to a “data-aged”
continuum time limit of parallel Brouwer updating. The stepsize of the Nearest
Newton procedure is identical to the constant in the exponent of the data-aging.

3. Variants of Standard PC Approaches and Heuristics

Aside from shrink-wrapping, all the schemes considered above have been investi-
gated in experiments. This section presents variants of those schemes that are yet
to be investigated in experiments, as well as some heuristics that have proven useful
in practice.

3.1. Modifications to the Monte Carlo Process of Parallel Brouwer

As described above and in [9], parallel Brouwer updating can be subject to “thrash-
ing”, in which each player’s update confounds the updates of the other players. The
simplest way to mitigate this is by not having each player ¢ jump all the way from
its current distribution ¢; to the new one recommended by parallel Brouwer updat-
ing, ¢;. Instead one can have each 7 only jump part way in the direction from g;
to ¢;. (This in fact is what is done in practice.) Another common way to mitigate
thrashing is to use data-aging. In this approach each conditional expectation value
in an update rule is replaced by a decaying average of its previous values. This
subsection presents a third approach.

To begin, note that we would not get any thrashing in parallel Brouwer if rather
than the function E,(G | z;), each agent ¢ performed its update using E;(G | x;)
for some fixed distribution 7 that is independent of both i and ¢. The natural choice
of 7 is exactly the distribution that ¢ is designed to approximate well, namely the
Boltzmann distribution.®

gNote that in doing this, we change the equilibrium distribution from that of Eq. 10. Now it is
given by ¢;(x;) e PEx(Glz;)
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To implement this modification to parallel Brouwer, we need to have all agents
i simultaneously estimate their associated functions E. (G | ;) rather than E,(G |
x;). Precisely because g should approximate 7 well, we can do this using our Monte
Carlo samples of ¢, simply by modifying how each agent uses those samples. The
general idea is to use those samples of ¢ as a proposal distribution for generating
samples from 7.
As an example, we can use the samples of ¢ to estimate the integral E.(G | ;)
via importance sampling. To do this we write
m(zi,z’ ;)
Jda’; [mG(ﬂﬁivxli)]Q(%’in)
Eﬂ'(G ‘ 1.1) = Y )
/ m(zi,a’_;) /
Jdo'; [ la(zi, )

—i Q(Ii,ILi)

and then sample ¢, using empirical averages across those samples to estimate both
the quantity in the square brackets in the numerator of our integral and the quantity
in square brackets in the denominator. (Note that we only need to know 7 up to an
overall normalization constant to do this.) Under the original sampling scheme, for
each of its possible moves x;, agent i forms the uniform average of the G values that
arose when it made that move, and takes that average as its estimate of E (G | z;).
Under the modified scheme, it would instead estimate the function E.(G | z;) with
a weighted average of those G values. The weights would be the associated values
r(2) /().

Another way to estimate E. (G | ;) using samples generated from ¢ would be via
a Metropolis random walk. Under this scheme ¢ would be a proposal distribution,
and the points it generates would be kept either if they raised 7(x), or, if not, if
the flip of an appropriately weighted coin comes up heads. At the end of the Monte
Carlo block, each agent i would form the uniform averages over the kept points,
thereby forming an estimate of its function E.(G | z;) !

This particular integration of parallel Brouwer and the Metropolis-Hastings al-
gorithm can be motivated other ways than as a modification to parallel Brouwer
updating. In particular, it can be motivated as a modification to the standard op-
timization algorithm of simulated annealing.

To see this, recall that in standard simulated annealing with a product proposal
distribution the sample values of each coordinate are chosen in a non-adaptive,
fixed manner, without regard to the results of previous sampling. An alternative
would be to have a Reinforcement Learning (RL) [33] agent associated with each
coordinate, and have each such agent choose the sample values of the coordinate it
controls. By giving the agents rewards based on values of G(z), this should result

hNote that these weights can be communicated to all the agents by the same system that broadcasts
G values to all the agents, if first all agents communicate g; values to that system.

iRef. [13] presents a detailed analysis of the use of samples of a product distribution to do
Metropolis-Hastings sampling. That work does not directly concern the issue of optimization.
Rather it concentrates on using Probability Collectives to improve the usual goal of the Metropolis-
Hastings algorithm, namely sampling a provided probability distribution.
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in “intelligently” chosen sample points. This is in contrast to the situation (as in
the conventional simulated annealing algorithm) where the sampling distribution is
pre-fixed and “dumb”.

Now one common RL algorithm has its agent sample from its possible moves
according to a Boltzmann distribution across its expected rewards for those moves.
Let those rewards be the values of G(x). Then this common RL algorithm for an
“intelligent” agent has that agent use the Brouwer updating algorithm to update
its distribution, and then samples from that distribution. This is algorithmically
identical to the scheme discussed above for “integrating parallel Brouwer and the
Metropolis-Hastings algorithm”. It is the basis of the Intelligent Coordinates algo-
rithm which experimentally appears to far outperform simulated annealing [3].

3.2. Variants of Maxent Lagrangians

Consider the use of iterative update rules for the ¢; in concert with Monte Carlo
sampling of ¢. In such scenarios, at each stage of the iterative updating, for each of
her moves x;, each player ¢ has an empirical estimate of the distribution P(G | ;)
(and therefore of any distribution P(f(G) | z;) for invertible f : R — R). Every
player ¢ uses her empirical estimate according to a pre-set algorithm — potentially
varying from one player to the next — to determine how to update her distribution
¢;- Our task as system designers is to choose those pre-set algorithms in such a way
that the ultimate goal of the updating is achieved as quickly as possible.

In the update rules discussed above each empirical distribution is reduced to an
expectation value which is then used to perform the update. While this need not be
the case in general, update rules based on expectation values form a very rich set,
including many rules not investigated previously. This subsection introduces some
such novel update rules that are based on expectation values.

Both the gp-KL Lagrangian and pg-KL Lagrangians discussed above had the
target distribution be a Boltzmann distribution over G. For high enough 3, such a
distribution is peaked near argmin,G(z). So sampling an accurate approximation
to it should give an x with low G, if 3 is large enough. This is why one way to
minimize G is to iteratively find a ¢ that approximates the Boltzmann distribution,
for higher and higher .

However there are other target distributions that grow larger as G grows smaller
e.g., logistic functions of G, step functions (i.e., Heaviside functions) of G, etc. So one
set of alternatives to the Lagrangians discussed above is to choose some alternative
target distribution(s), and for each one find the ¢ minimizing pg or gp KL distance
to it.

Return now to the Maxent Lagrangian. Say that after finding the ¢ that min-
imizes the Lagrangian, we IID sample that ¢, K times. We then take the sample
that has the smallest G value as our guess for the x that minimizes G(x). For this
to give a low z we don’t need the mean of the distribution ¢(G) to be low — what
we need is for the bottom tail of that distribution to be low. This suggests that in
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the E(G) term of the Maxent Lagrangian we replace
Olx — [ da’ q(«")O[G(x) — G(a")]

K

q(z) < q(x) (16)

The new ¢ for E,(G) given by Eq. 16 is still a probability distribution over z.
It equals 0 if G(x) is in the worst 1 — x percentile (according to distribution q)
of G values, and x~! otherwise. So under this replacement the E(G) term in the
Lagrangian equals the average of G restricted to that lower x’th percentile. For
k = K~', our new Lagrangian forces attention in setting ¢ on that outlier likely to
come out of the K-fold sampling of ¢(G).J

As usual, one can use gradient descent and Monte Carlo sampling to minimize
this Lagrangian, taking care to account for ¢’s now appearing twice in the integrand
of the F(G) term. Note that the Monte Carlo process includes sampling the prob-
ability distribution Oln—[ da’ q(Z,L@[G(xFG(II)H as well as the ¢;. This means that
only those points in the best x’th percentile are kept, and used for all Monte Carlo
estimates. This may cause greater noise in the Monte Carlo sampling than would
be the case for k = 1.

As an example, say that for agent i, all of its moves have the same value of
E(G | x;), and similarly for agent j, and say that G is optimal if agents ¢ and j both

make move 0. Then if we modify the updating so that agent i only considers the
best values that arose when it made move 0, and similarly for agent j, then both
will be steered to prefer to make move 0 to their alternatives. This will cause them
to coordinate their moves in a way that improves the Lagrangian.

A similar modification is to replace G with f(G) in the Maxent Lagrangian, for
some monotonically increasing function f(.). This would distort G to accentuate
those z’s with good values. Intuitively, this will have the effect of coordinating the
updates of the separate ¢; at the end of the block, in a way to help lower G. The
price paid for this is that there may be more variance in the values of f(G) returned
by the Monte Carlo sampling than those of G, in general.k

Note that if ¢ is a local minimum of the Lagrangian for GG, in general it will
not be a local minimum for the Lagrangian of f(G) (the gradient will no longer be
zero under that replacement, in general). So we can replace G with f(G) when we
get stuck in a local minimum, and then return to G once ¢ gets away from that
local minimum. In this way we can break out of local minima, without facing the
penalty of extra variance. Of course, none of these advantages in replacing G with

IThis algorithm should be contrasted to iterative focusing, where (in one version) we solve for the
new distribution closest to the ¢ given by Eq. 16, whereas here we directly insert that new ¢ into
the Eq(G) component of the Maxent Lagrangian.

KWrite « for the value of E(G) at the moment we replace G — f(G). Then it may make sense to
require that E(G) < v even after the replacement. This could be done in the usual way by adding
a term a[F(G) — 7] to the Lagrangian. The Lagrange parameter o would initially equal 0, and
then get updated by gradient ascent on the Lagrangian periodically. So it would periodically get
increased by an amount proportional to the violation factor E(G) — v, thereby “annealing in” our
constraint.
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f(G) hold for algorithms that directly search for an x giving a good G(x) value; z
is a local minimum of G(z) < « is a local minimum of f(G(x)).

An even simpler modification to the E(G) term than those considered above is
to replace G(x) with ©[G(z) — K]. Under this replacement the F(G) term becomes
the probability that G(z) > K. So minimizing it will push ¢ to x with lower G
values. For this modified Lagrangian, the gradient descent update step adds the
following to each g;(x;):

20 Ba(G < K | 27) + In(g; (7))

a[Bq(G < K | @) + In(gi(x:))
(17)

In gradient descent of the Maxent Lagrangian we must Monte Carlo estimate
the expected value of a real number (G). In contrast, in gradient descent of this
modified Lagrangian we Monte Carlo estimate the expected value of a single bit:
whether G exceeds K. Accordingly, the noise in the Monte Carlo estimation for
this modified Lagrangian is usually far smaller. In addition, just like in descent of
the Maxent Lagrangian, the Monte Carlo estimation for Eq. 17 is well-suited to a
distributed implementation.

In all these variants it may make sense to replace the Heaviside function with
a logistic function or an exponential. In addition, in all of them the annealing
schedule for K can be set by periodically searching for the K that is (estimated to
be) optimal, just as one searches for optimal coordinate systems [2, 1]. Alternatively,
a simple heuristic is to have K at the end of each block be set so that some pre-
fixed percentage of the sampled points in the block go into our calculation of how
to update q.

Yet another possibility is to replace E(G) with the x’th percentile G value, i.e.,
with the K such that [ da’ ¢(2")©(G(2") — K) = k. (To evaluate the partial deriva-
tive of that K with respect a particular ¢;(x;) one must use implicit differentiation.)

3.3. Heuristics for improving the update rules

There are a number of practical issues arising in many of the schemes elaborated
above. The update rules given above are all completely distributed, in the sense
that each agent’s update at time t is independent of any other agents’ update at
that time. Typically at any ¢ each agent ¢ knows ¢;(t) exactly, and therefore knows
Infg;(7)]. However many of those update rules for each agent ¢ involve conditional
expectation values dependent on g_;. Moreover in practice often those expectation
values cannot be evaluated in closed form. As described above though, one can cir-
cumvent this problem by having the expectation values be simultaneously estimated
by all agents via repeated Monte Carlo sampling of ¢ to produce a set of (z, G(x))
pairs. Those pairs are used by each agent ¢ to estimate the expectation values it
needs (e.g., E(G | ; = j)), and therefore how to update its distribution.
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Consider the case where we do need to use Monte Carlo to estimate conditional
expected values of some f(x), and z is high-dimensional. In this scenario block-wise
Monte Carlo sampling to estimate conditional expectation values can be slow. The
estimates typically have high variance, and therefore require large block size L to
get an accurate estimate.

One set of ways to address this is to replace the team game with a non-team
game, i.e., for each agent ¢ have it estimate quantities based on a private utility
gi rather than G (e.g., based on E(g; | x; = j) rather than E(G | z; = j) . Each
such private utility is chosen so that the Monte Carlo estimates have much lower
variance than those based on G, without having any bias [1, 14].

As an example, say we are doing gradient descent of the Maxent Lagrangian.
Replace the values of G(z) recorded by agent ¢ in the Monte Carlo process with the
values of g;(z) = G(z) — D(z_;), where D(z_;) « [ da} w(x})G(z}, x_;) for weight-
ing factors w; determined by how frequently z} arose in the Monte Carlo process.
This replacement speeds the convergence of the Monte Carlo process to accurate
estimates of the true expectation values E(G | x;) [1]. Furthermore it can often be
done with minimal communication overhead between the agents. Indeed, often it is
easier to evaluate such a g;(z) than G(z). The worst case is where G(z}, z_;) must
be explicitly re-evaluated for each of the possible . Even there though, those extra
re-evaluations are often not a large extra expense. This is because they can be used
to augment the Monte Carlo samples of values of g;(z}) for x} # x; as well as those
for z} = x;.

Another useful technique is to allow samples from preceding blocks to be re-
used. One does this by first “aging” that data to reflect the fact that it was formed
under a different q_; . For example, one can replace the empirical average for the
most recent block k,

N Oy < CRLS
H(k) = FLFL 5 )
t=kL Yztj

with a weighted average of previous expected G’s,
> Gl (m)entkmm)
Zm e—k(k—m)
for some appropriate aging constant x.™

IFormally, this means that each agent i has a separate Lagrangian, for example formed from the
Maxent Lagrangian by substituting g; for G. See [2] for the relation of this to bounded rational
game theory.

MNot all preceding GAi’j(m) need to be stored to implement this; exponential ageing can be done
online using 3 variables per (%, j) pair. Say agent ¢ has just made a particular move, getting cost
r, and that the most recent previous time it made that time was T iterations ago. Then the new
T+k:TEa,
1+kTa
constant less than 1, and a is initially set to 1, while itself also being updated according to a +=
ET. So agent i only needs to keep a running tally of E,a, and T for each of its possible moves to
use data-aging, rather than a tally of all historical time-cost pairs.

estimated cost for that move, E’, is related to the previous one, E, by B/ = , where k is a
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Typically such ageing allows L to be vastly reduced, and therefore the overall
optimization of .Z to be greatly sped up. For such small L though, it may be that
the most recent block has no samples of some move z; = j. This would mean that
éi,j (k) is undefined. One crude way to avoid such problems is by simply forcing a set
of samples of each such move if they don’t occur of their own accord, being careful
to have the x_; formed by sampling q_; when forming those forced samples. A
more sophisticated approach is to use shrink-wrapping, introduced above. Another
approach involves supervised learning, as described in the section on “Empty bins”
below.

There are numerous other techniques that are useful in practice. For example,
typically one must use such techniques to decrease the step size in the descent rules
(i.e., gradient descent and Nearest Newton) as one nears the border of Q. Similarly,
often the non-descent update rules (e.g., Brouwer) can be improved by making only
a partial “step” at each iteration, i.e., by averaging the current ¢ with the ¢ given
by the update rule as listed above, rather than by replacing it with that q.

Note that these practical difficulties do not apply to all updating schemes. In
particular, in adaptive importance sampling, each agent i’s update rule has no direct
dependence on ¢_;. (The only dependence is indirect, via the fact that the generation
of the Monte Carlo samples uses §;; there is no expression like E, ,(G | z;) in the
update rule.) Accordingly, all previous Monte Carlo data can be used, without any
data-aging or the like. All that is required is that the values G(z) and ¢_;(x) —
which each agent uses to perform its update at the time the Monte Carlo sample x is
generated — are recorded for later use. Given those recorded values, at any update,
the agent simply averages the ratios exp (—0G(x))/q—;(z) for all preceding data
points, regardless of whether some of them were made with different distributions
G—;(z) from other ones. The normalized version of those averages gives its updated
estimate of the marginal of the Boltzmann distribution p”, just like normal.

In fact, given the recorded values G(z) and ¢_;(z), it is even possible to re-use
old data after 8 has changed, if one has evaluated and recorded the normalization
constant of p? for those old 3 values. Furthermore, since there is no need for an
agent ¢ to estimate a functional of q_;, there is not even a need for Monte Carlo
“blocks” of length L, per se. ¢ can be updated continually after each new Monte
Carlo sample, rather than only at the end of such a block of L samples.

4. Tterative Focusing

This section introduces a class of schemes for minimizing F,(G), without direct
concern for the Maxent Lagrangian.

4.1. Iterative focusing for pq KL distance

Given some current distribution, often one can generate distributions that will be
more peaked about low G(x) than that current distribution by appropriately trans-
forming that current distribution. This suggests a ratchet-like process that iterates
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a two-step procedure: First one applies such a transformation to the current product
distribution, generating a new distributions that in general need not be a product.
Then one finds the ¢ that best approximates that transformed version, to get the
product distribution for the next iteration. More concretely, the process of iterative
focusing proceeds as follows:

1) Based on G, choose an associated focusing operator M : P — P such that
Enmp)(G) < Ep(G) for any distribution p. In general M(p) € Q. So we also choose
a distance measure D(.,.) across P, which we will use to get back to Q.

2) Given a product distribution ¢, solve for argmingcoD(g, M(§)). (In general, the
finding of that minimizing ¢ may be an extensive multi-step process in its own
right.)

3) Set the new ¢ to that solution from (2). Potentially “anneal” M as well, to
tighten the focusing around x with lower values of G(z). Return to (2).

We would like to be able to guarantee that in each pass iterative focusing pro-
duces a distribution that is closer to a delta function about argmin,G(x). If M(q)
were € Q, so that D were unnecessary, we would have such a guarantee. However
when this is not the case, the distribution output in step (3) # M(§), and it may
not be superior to the distribution input to step (2). Ultimately whether the dis-
tribution produced by step (3) is superior to the one input to step (2) depends on
the relation of D, Q, the ¢ input to step (2), and M(.).

The simplest choice of focusing operator is multiplication by an a nowhere-
negative focusing function Fg(z) that increases as G(x) decreases, followed by
renormalization:

Proposition 1: Say F( is integrable and nowhere-negative and G(z') < G(z) =
Fo(2') > Fg(z) Vo, 2'. Then Fg is a single-valued function of G(z), and in addition
g 1 iy _ Fe(o)p@)

the focusing property of step (1) is guaranteed for M(p)(z) = Tds Fo(o)p@) "
Proof: Write Fg(x) = f(G(z)) and let y indicate a generic value of G(z). Then
the post-focusing distribution over y is

fG@)ptx) — _ fWey)
Jdz f(G(@)p(x)  [dy f(y)p(y)

where p(y) = [ dx p(2)§(y—G(z)). Define the distribution r(y) £ %. Then

Ply) = / 2x8(G(x) — )
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r(y)

Therefore there must be a greatest value a such that Vy < a, e

> 1, and a smallest

value b such that Vy > b, ;Ezg < 1. Now by normalization,

/ " dylr) - ply)] = - / " dylr(y) — p),

and r(y) = p(y) throughout the range (a,b). Write the change in expected G when
multiplying p(x) by Fg(z) and renormalizing as

A(G) = /_Oo dy ylr(y) — p(y)]
= /j dy y[r(y) — p(y)] + /boo dy y[r(y) — p(y)]-

The first integral is bounded above by a [*_ dy[r(y) — p(y)], and the second is
bounded above by b [, dy[r(y) — p(y)]. Combining gives A(G) < 0. QED.

Without loss of generality, we can take F(x) to be a probability distribution.
As any example, given any distribution p, the focused distribution

s P@)O[K — ()]
[ dr' p(a)O[K — G(a)]

is guaranteed to be more peaked about z with small G(z) than is p. So we can
minimize G(x) by iterating the process of finding the product distribution ¢ that
best approximates Mgk _¢(.))(p) and then setting p = ¢. In doing this we can
also gradually decrease K, to get distributions that are more and more restricted
to argmin,G(x). This “annealing” is analogous to an iteration of the process of
finding the ¢ that best approximates the Boltzmann distribution for a particular 3
and then increasing (.

It would be nice to choose a distance measure D to minimize the chances that
the projection back into Q needed in iterative focusing thwarts the improvement
given by applying the focusing operator M. However it’s not clear how best to do
that. So as an alternative, here we focus on the simplest choices of distance measure,

Mok -a())(p)(x)

the pg and ¢gp KL distances.

Continuing with our example, for the choice of pg-KL distance as the distance
measure D, the ¢ that best approximates Mex—g(.))(p) is just the product of the
marginal distributions of Mgk _¢(.))(p). So in each pass of the associated iterative
focusing algorithm,

Jdax'_q(z’;, x)O[K — Gz, 2;)]
[ dz’ q(2")O[K — G(a")]
(G < K, z;)
q(G < K)
= q(z; | G < K) (18)
x ¢(G < K | z;)qi(x;) (19)

Qz(ﬂﬁz) —



December 26, 2006 16:45 WSPC/INSTRUCTION FILE acs.fixed.2

Advances in distributed optimization using probability collectives 25

This new ¢g; can be Monte-Carlo estimated by agent 4 using only observed G values,
in the usual way. So like gradient descent on the Maxent Lagrangian, this update
rule is well-suited to a distributed implementation. Indeed, the only term that needs
Monte Carlo estimating is ¢(G < K | ;).

4.2. Iterative focusing and Brouwer updating

One obvious potential problem with this updating rule is that the randomness
of the Monte Carlo process might erroneously lead one to set g;(z; = a) to 0 even
though the x that minimizes G has its i’th component equal to a. Once this happens
recovery is impossible; there is no way for ¢;(x; = a) to increase from 0 subsequently.

We can avoid this problem if we replace the Heaviside focusing function with
a “softened version” like a logistic function with exponent 3 about K, O () £
[1 + eAG@=K)]=1 With this change the update rule becomes

E(éﬂ,KJ xi)‘]i(l'i).
E(©g,k)

qi() (20)

As another alternative, we can replace the Heaviside function with a Boltzmann

distribution with exponent 3, getting the update rule

E(e B¢ i)qi(x;
qi(wi) — ( E(etﬁggz( )

(21)

where all terms on the righthand side are evaluated under the distribution that
generated the Monte Carlo samples.

Unlike the update rule of Eq. 19 or Eq. 20, with Eq. 21 we don’t need to specify
an annealing schedule under which the focusing function changes as the algorithm
progresses. The annealing is automatic, due to the fact that multiplying by e8¢ ()
at each iteration is the same as increasing 3 by the same constant at each iteration,
i.e., due to the fact that the Boltzmann distribution is a Lie group with parameter
s.

The update rule of Eq. 21 is similar to that of Eq. 14, only here to form the
quantity being averaged one does not divide by ¢(z). It’s also very similar to the
Brouwer update rule applied to the team game [10, 1, 34]. However in contrast
to the potential “thrashing” of parallel Brouwer updating, the update in Eq. 21 is
guaranteed to minimize its associated Lagrangian of pq distance to Mex—_cq(.))(q)
(assuming no error in estimating the expectation values). On the other hand, in
Eq. 21 the Lagrangian is not distance to a fixed distribution, as it is with the
Maxent Lagrangian of parallel Brouwer updating and with the update of Eq. 14.
Rather the “target distribution” itself changes from one iteration to the next. This
is actually the case for all iterative focusing, and is the analogue of the thrashing
of parallel Brouwer updating.
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4.3. Iterative focusing for gp distance

Rather than pg KL distance, consider using gp KL distance as thﬁec(elgror measure
W. Up to
an overall additive constant, that distance is just the Maxent Lagrangian, with one
difference: we replace the S(q) term with —K L(q || §). This suggests an iterative al-
gorithm which starts with a distribution ¢, and then searches for the ¢ minimizing a
modified version of the Maxent Lagrangian -#(q) in which the S(gq) term is replaced
by —KL(q || G§). When that search terminates one resets ¢ to that minimizing ¢
and starts all over again.

The natural choice for the initial § is the uniform distribution. In this case
—KL(q || §) = S(q), so our KL distance for the first pass of the algorithm reduces to
the usual form of the Maxent Lagrangian. Therefore the first stage of the algorithm
proceeds to a local minimum ¢! of the Maxent Lagrangian (via Nearest Newton,
Brouwer updating, or some such). Once that local minimum is found, there are
many schemes to break out of it. One of the most obvious is to simply raise (!) 3
and restart the descent. Such a change to § is equivalent to modifying our current
q nggj—%, by multiplying it by another Boltzmann
distribution (and then renormalizing).

The most natural choice for when to change § to ¢! is after one has gone past all
such local minima to a global minimum (or more generally, to what one hopes is a
global minimum). However there are many alternatives. For example, one could do
the replacement at the first local minimum. As opposed to multiplying the current
target p by a Boltzmann distribution, such a replacement of ¢ would make a new

for approximating the Boltzmann-focused distribution, ¢(z)

target distribution, p £

target distribution by multiplying ¢* by a Boltzmann distribution. Obvious variants
of this scheme weave the resetting of the target p more frequently into the overall
process, so that it is updated before a local minimum is found. Indeed, one can even
have the target reset after every modification of ¢, to be the preceding q.

As an example of the foregoing, given the current product distribution ¢, the
optimal solution Eq. 10 changes to

¢ (w:) o< Gi(i)e P (O

So Brouwer updating is now different from what it is in the conventional Maxent
Lagrangian case, with the distribution ¢ serving as a prior probability p (recall the
Maxent Lagrangian). If at each t + 1 we update ¢'™* to ¢*, and (as in conventional
Brouwer) use ¢! to estimate the expectation value, the update rule is

qt+1($i) . qf(xi)e_ﬁeq (Glzi) (22)

Just as the parallel, serial, etc., variants of Brouwer updating all have their
strengths, so there are reasonable schemes for how to set the updating of the distri-
butions on the righthand side of Eq. 22. For example, one might replace the ¢! (x;)
term on the righthand side of Eq. 22 with qf/(xi) for some earlier '. Another possi-
bility is to replace the ¢* in the exponential on the righthand side with qt” for some
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t” < t, and more generally one can vary which of these replacements gets made
when.

It is interesting to compare the variant of parallel Brouwer given by Eq. 22 with
Nearest Newton applied to the Maxent Lagrangian. If we expand the exponential
in Eq. 22 to first order we get

g; " (i) oc i (@)1 = BEq (G | 7). (23)

If we now approximate the update of Nearest Newton by removing the In term (i.e.,
by taking temperature to 0, with stepsize changed accordingly), we get an update
rule almost identical to that of Eq. 23. (The remaining difference is that Nearest
Newton normalizes the update to stay in P by adding a normalizing vector rather
than by dividing by a normalizing scalar.) This connection is not too surprising, in
light of the fact that in the continuum time limit with data-aging, Nearest Newton
and parallel Brouwer updating become identical, with the stepsize of the Nearest
Newton identically equal to the data aging-constant in the parallel Brouwer [14].
In addition to Brouwer updating, gradient descent also changes when we use
it for iterative focusing of ¢ using ¢p distance rather than for minimization of the
Maxent Lagrangian. The term wu;(j) of Eq. 2 that sets the descent direction becomes

. qi(z:)
BE(G | z; =7)+ In[= . 24
(@] a= ) + 2 29)
So by iteratively focusing ¢ rather than descending the Maxent Lagrangian we
penalize ¢’s that differ from q. If ¢ is updated frequently, this provides an inertia

effect in the dynamics of ¢, impeding it from changing too fast.”
Nearest Newton also changes when used for iterative focusing rather than de-
scending the Maxent Lagrangian. It becomes

‘J,Hl(j) _ L5 _ qt(a HM
— BlEg (G | 2; = §) - Ep(G)): (25)

We can similarly implement gradient descent, Nearest Newton, or Brouwer updat-
ing for iterative focusing of ¢p KL distance for other focusing functions besides the
Boltzmann function. For example, for the logistic function as the focusing func-

tion, we get the same formulas as above, just with G(z) replaced throughout by
1n[1+eﬁ(G(w)fK)]

5. Summary of Update Rules

In conventional optimization over Euclidean spaces, one can use many different al-
gorithms, including gradient descent, conjugate gradient, Newton’s method, quasi-

2Tn the limit where § is always set to the ¢ just before the current one, our gradient descent becomes
a second order dynamical equation. Iterative focusing based on several previous distributions, not
just the single distribution ¢, leads to higher-order dynamics.
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Newton, simulated annealing, genetic algorithms, etc. As proven in [35], it is the-
oretically impossible for any one of these problems to be superior to the others
overall. Rather which algorithm one should use depends on the nature of the func-
tion being optimized, the expense of evaluating various kinds of information during
the optimization, etc.

Similarly, in the preceding discussion many different PC update rules were pre-
sented, with the ultimate choice of which rule to use depending on the nature of the
function being optimized, the expense of evaluating various kinds of information
during the optimization, etc. This section compares some of those update rules.

All the update rules described above can be written as multiplicative updating.
The following is a list of the update ratios r, ;(;) £ ¢'™(;)/g}(;) of some of those
rules. In all of these F is a probability distribution over z that never increases
between two z’s if G does (e.g., a Boltzmann distribution in G(z)). In addition
const is always a scalar that ensures the new distribution is properly normalized
and « is a stepsize.°

Gradient descent of gp distance to Fg:
Eg i (In[Fg] | #;) + In(gf(z;)),  const

1—a - 26
| 7 e 20)
Nearest Newton descent of ¢p distance to Fg:
1 — a[E,(In[Fg] | ;) + In(g}(x:))] — const (27)
Brouwer updating for ¢p distance to Fi:
eeq(ln[FG] ED) (28)
const X —————— 28
a; (i)
Importance sampling minimization of pg distance to Fg(x):
F
const x eq(q—? | z;) (29)

Iterative focusing of § with focusing function Fi(z) using gp distance and
gradient descent:

Eqg(In[Fg] | =) + ln[q{($i)] const

— Gi(zi)ly
bt @) T

(30)

©As a practical matter, both Nearest Newton and gradient-based updating have to be modified in
a particular step if their step size is large enough so that they would otherwise take one off the
unit simplex. This changes the update ratio for that step. See [8].
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Iterative focusing of ¢ with focusing function F(x) using ¢p distance and
Nearest Newton:
g; ()

Gi(x:)

1 —o{E;(In[Fg] | z;) + In| ]} — const (31)

Iterative focusing of ¢ with focusing function F(x) using ¢p distance and
Brouwer updating:

const x ¢Bqt ANIFG] zi) o M (3

Qf (w5
Iterative focusing of ¢ with focusing function F;(z) using pg distance:

q(z;)
qt ()

const X Eg(Fg | ;) X (33)

Note that some of these update ratios are themselves proper probability distribu-
tions, e.g., the Nearest Newton update ratio.

All of these update rules are invariant under rescaling of Fg(z), i.e., multipli-
cation of Fg(x) by a constant (the term const changes to compensate for the new
scale). When Fg(x) is an exponential (i.e., Boltzmann function) of G(z), such a
transformation of Fg(z) is equivalent to adding a constant to G(z). However for
the other choices of Fz(z) mentioned above (e.g., ©(K — G(x))), there is no sim-
ple correspondence between this invariance of the update rule and a change to
G(z). In particular, for those other Fg, rescaling of Fi(x) does not correspond
to adding a constant to G(z). Accordingly, unlike the case for exponential Fg(x),
those non-exponential F(z) do not give rise to update rules that are invariant
under addition of a constant to G(z). The exponential F(z) has the other nice
property that rescaling G(x) is equivalent to just translating the exponent constant
B, i.e., to tightening F(z) about x with low G(x). Just as other Fg(x) do not have
nice behavior under addition of a constant to G(z), they also do not have this nice
character under rescaling.

Simple modifications to non-exponential Fg allow them to share these desir-
able characteristics. These modifications involve dynamically replacing constants in
those Fg, in particular replacing constants that might otherwise be annealed accord-
ing to a pre-fixed schedule. Typically in the place of such constants one uses explicit
functions of ¢. For example, we can replace O(K — G(x)) with ©(E;(G) — G(z)),
or with O(n(e,q, G) — G(z)), where w(e, ¢, G) is the value of G(z) in the best €
percentile under distribution ¢. For either of these replacements Fg(z) is invariant
under both translation and scaling of G(z).

Say one has a set of multiple objective functions / constraints {G;} rather than
just a single, unconstrained function G.P Some of the update rules presented above

PFor current purposes, we can cast constraints over x as objective functions, so that the expectation
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can be modified to improve all of those functions simultaneously. One does this
by replacing “Fg(x)” throughout the update rule with some function Fig,}(z).
That function is designed so that its global maxima contain a Pareto optimal z
(according to the {G;}). In addition it cannot increase (i.e., improve) in going from
one z to another if any of the Fg, () increase in that transition.4 A simple example,
applicable for update rules using pq distance, is Fyg,y(z) = [[; ©(K; — Gi(x)). In
practice of course, the choice of the function Fyg,1(7) and the update rule one is
modifying will have a crucial effect on how prone the algorithm is to getting caught
at local critical points.

These update rules can be broadly grouped into two distinct sets based on what
guarantees they have. Say we can evaluate every term in each update rule in closed
form, or alternatively that our Monte Carlo estimate is exact. Then there is a
g-independent target distribution, p*, and a distance measure D, such that each
update of ¢ in the serial Brouwer version of Eq. 28 is guaranteed not to increase
D(q,p*). (In this case p* is the Boltzmann distribution over values of Fz, and D is
gp distance.) The same is true for for adaptive importance sampling minimization
of pq distance, Eq. 29. (Again p* is the Boltzmann distribution in F¢.) For small
enough step size, we also have this guarantee for gradient descent of ¢p distance
and Nearest Newton. None of the other update rules have such guarantees.

Finally, it is worth re-emphasizing that for the update rule of adaptive impor-
tance sampling minimization of pg distance, at equilibrium each ¢; is independent
of the distributions ¢_;. (It’s just the marginal of the Boltzmann distribution p”.)
As mentioned previously, the same property holds for the variants of the Monte
Carlo process discussed in the section on modifying the Monte Carlo process for
Brouwer updating discussed above. This means one can use samples from all the
previous Monte Carlo blocks with impunity. You don’t have to worry that the sam-
ples of those earlier blocks were formed under a different ¢q_;, and therefore would
lead to a different update from the one appropriate for the current Monte Carlo
block. In addition each of these two algorithms has a single equilibrium, given by
the Boltzmann distribution p®. In this, they have no local minima problems. None
of the other update rules has such a set of guarantees.

6. PC Incorporating Constraints over

Say that we only want to minimize G(x) subject to a set of equality and/or inequal-
ity constraints over X that we want to enforce exactly. This means the support of ¢
must be restricted to x € X that meet those constraints; all other x are proscribed.

of those functions equals 0 iff the underlying distribution has its support restricted to  meeting
the constraints.

4Such a function is only a partial ordering over x. In particular, consider a change in x which
improves some GG; while all the others get worse. Often we can follow that change with another in
which the improving and worsening G; flip roles, so that in aggregate all the G;(z) have shrunk,
even though F{q,}(x) cannot have decreased.
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This section discusses some schemes for finding the ¢ that optimizes E,(G) while
having a support restricted to such allowed =x.

6.1. Difficulties extending PC to X -constraints

Some work has been done on trying to enforce X-constraints by adding to the
Lagrangian a penalty term [E,(V)]? for some appropriately chosen V(x) for each
X-constraint and then requiring that each such term equal 0. This for example is
what was done in [18].

Now in general, restricting the support of ¢ to the x allowed by our constraints
is equivalent to a set of up to |X| — 1 independent, new restrictions on the values
of the components of the vector g, one restriction for each component z at which
those constraints mean that ¢(.) must equal 0. This can be the case even if we have
only one constraint on X, if that constraint allows only a single x.

However requiring that a set of one or more penalty terms like [E,(V)]? all equal
0 gives us only as many new restrictions on ¢ as there are such penalty terms. So
in general the number of restrictions on ¢ we have added in requiring the penalty
terms all equal 0 is fewer than the number of new restrictions we need enforced.
Accordingly, it is generically impossible to use such penalty terms to restrict ¢ so
that its support is precisely those x that are allowed by the X-constrains.

In practice, this means that a penalty term approach can only enforce the con-
straints by over-enforcing them, i.e., by causing a ¢ that excludes some allowed x as
well as the proscribed z. In addition, especially with product distributions, adding
penalty terms [E,(V)]? to the Lagrangian can result in local minima ¢ whose sup-
port includes proscribed z. Accordingly, descent of the Lagrangian can get trapped
at ¢ that do not enforce our X-constraints. (In general, to enforce restrictions on
the primal variable of the Lagrangian — ¢ in our case — penalty terms should
grow monotonically as one goes “further and further away” from the desired region
of the primal variable. This is not the case for penalty terms like [E,(V)]? with
product distribution ¢.) Accordingly, as demonstrated by the results in [18], while
the penalty term approach can perform quite well, its performance is not perfect.

There are other approaches to implementing X-constraints in PC that are not
subject to these kinds of problems. Two of them are illustrated in the next two
subsections.

6.2. X -constrained optimization using barrier and penalty
functions

To motivate a more careful approach, as usual we encapsulate the X-constraints
with a windowing function W (z) that equals 1 for = that satistfy the constraints
and equals 0 for all proscribed z. This translates into a set of inequality and equality
constraints over ¢:

q(z) = 0 Va such that W(z) =0 (34)
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q(z) > 0 Vz such that W(z) =1 (35)

We can then apply barrier function methods (for the inequality constraints)

together with Lagrange parameters (for the equality constraints) in the usual way.

For illustrative purposes we choose quadratic penalty terms (that each g(z) must

equal 0 at a proscribed ), logarithmic barrier functions, and a product distribution
q.* We end up with a modification of the Lagrangian above:

Z(q, i, )\7f) = Ey(G)
+ ZE[/dﬂﬁz qi(w;) — 1]
— /d:lc u(x)W(x)Zln[QZ($Z)]

+ / do A@)[1 = W @) [l
= Eq(G)

+ Eq(gA[1 = W)
= Eq(G)

+ ZTZ[/dJSz qi(xi) — 1]
- VZE;l(W In(q;))

+ Eg(gA[l = W]) (36)

where A\(x) is a set of Lagrange/penalty parameters, the T; are still Lagrange terms;

p(z) is a set of barrier parameters; and V = [ dz pu(x) is the normalization constant

to turn p into the probability distribution fi. Note that we no longer explicitly have

a barrier term for keeping ¢;(z;) non-negative Vr;; that’s taken care of with the

combination of our barrier terms and our A(x)-based penalty terms.

This Lagrangian gives the following update rules:

0L By (G | 2) + T — WUCHLIUSED)

9q;(z;) i (z:)

is the gradient, with T; found by integrating the other terms over all x; in the usual

way. So parallel Brouwer updating is based on the set of equations
_ ) Ea(W | 2,)

T; + 2Eq(qA[1 = W] | 23) + E¢(G | ;)

+ 2B, (A1 = W] [ ai)  (37)

qi(w) (38)

'These penalty terms should not be confused with the ones on expectations over g discussed above.
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and Nearest Newton is based on the gradients

0L @W@)
and (diagonal, positive-definite) Hessians
Hy(2) p(z) = % + A(2)[1 — W(2)]. (40)

6.3. Monte Carlo implementations of enforcing X -constraints via
barrier and penalty functions

Regardless of the barrier functions and penalty terms we use, the conditional expec-
tations in this update rule can be evaluated via Monte Carlo, as usual. The difference
is that, in addition to computing G(z) for each joint move z in the Monte Carlo
process, we also need to compute W (x). Note that the actual “computation” of the
objective function G(z) and the feasibility indicator W (x) has nothing to do with
the optimization algorithm. These computations are performed by an oracle, which
represents the process or entity we are trying to optimize: it could be a complex
computer program that computes performance measures and feasibility of some
design, or an actual physical process whose performance is to be optimized, the
response of players in a game, or even just nature’s responses to some actions by
many “agents”.

An interesting issue that now arises though is how we evaluate the parameter
functions p(z) and A(z) which (just like ¢) get updated periodically, and which also
need to be broadcast at every Monte Carlo step in order to for every agent i to
calculate the update to ¢;. This is particularly crucial for the Lagrange parameter
vector A(.); we must eventually get it exactly right to be guaranteed that the associ-
ated (penalty term) constraints on ¢ are satisfied. (The barrier functions constraints
on ¢ are enforced no what matter barrier parameter vector p(.) we use, so long as
none of its components exactly equals 0.) There are several ways to implement this
dynamics of A(.). Here we describe one where the same oracle that evaluates W (x)
with each Monte Carlo sample also evaluates A(x).

In first order ascent schemes for finding critical points of the Lagrangian, the
Lagrange parameters are updated by gradient ascent in the Lagrangian each time
one finds a minimum over the primal variable. Here that means each A(z) is held
fixed while one minimizes the Lagrangian over ¢. Then each A(z) gets incremented
by (a stepsize times)

0L
O (x)

=[1=W(2)l¢(z) (41)

once we have found such a local minimum (over ¢) of the Lagrangian. Then we
again minimize the Lagrangian over ¢, for this new parameter vector, and repeat
the process.
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On the face of it, this would seem to require that we store values of the function
A(z) for all proscribed . (Note we never update A(z) for allowed x, since the right-
hand side of Eq. 41 always equals 0 for any such x.) However we only need to use
those values when we estimate conditional expectations over g using Monte Carlo,
i.e., when we have a particular joint move x. This allows us to do the update to the
A(z) associated with that Monte Carlo sample x on the fly.

The basic idea is to note that for a proscribed z, the cumulative effect of all
previous updates to A(z) is the sum of the associated preceding values of ¢(x)
(since 1 — W(z) = 1 always for such an z). So say we have a Monte Carlo joint
move z. Have each agent ¢ broadcast the vector of the probabilities it assigned to
x; at all preceding times the system was at a (¢-space) minima of the Lagrangian,
{qfl : ¢ a preceding minimum of .Z}. The oracle that is calculating whether the
joint Monte Carlo move z is feasible (i.e., checking if W (z) = 0) receives all those
vectors. If x is proscribed, the oracle calculates the “dot product” »°,, [, ¢f(z).
This is exactly the current value of A(z) (assuming A(x) started at 0). The oracle
can then broadcast that value out to all the agents. Each agent ¢ then uses the
set of A(z) values it has received from the oracle those times it made Monte Carlo
move x; to estimate Eq(A[l — W] | x;). (It does this exactly the same way it uses
the broadcast G(x) values to estimate E,(G | x;).)

6.4. Small regions of allowed X when using barrier and penalty
functions to impose X -constraints

The foregoing will run into difficulties if the constraints on x are so tight that
the feasible region is almost never sampled. In the extreme case, if we’re doing a
satisfiability problem, finding a feasible x is the whole goal, and encountering one
in random sampling will be rare, to put it mildly.

For such problems I think one has to deal with the equality constraints using
penalty functions rather than Lagrange parameters. Formally, a penalty function
is a function that equals 0 if the constraints are satisfied, and is greater than 0
otherwise. Such functions are added in to the objective function. (If they’re used
for equality constraints, then they replace the usual Lagrange terms enforcing those
equality constraints.) This means that sample points outside of the feasible region
will now contribute something other than 0 to the associated expectation values.
Augmented Lagrangians are an example of all this.

Typically one uses penalty functions to deal with all the constraints of the prob-
lem, both equality and inequality. For simplicity, I'll consider a modification, where
one is still using entropy barrier functions to deal with the inequality constraints,
and Lagrange parameters to ensure each ¢; is normalized, but use penalty functions
to deal with the equality constraints specifying the feasible region.

A typical case is the quadratic penalty function. The resultant Lagrangian is

g(qnu’ayv f) = EQ(G)
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+ ZTZ[/ dx; qi(z;) — 1]

+ V Z Ea(W ¢n(g;))

+ E,(v[1 —Wlg). (42)
The associated gradient is
0L
=k i) + T
aCIi(xi) Q(G | x ) +

+ Vi(z)Eg(W | 2;)[1 + In(g; (2;))]
+ 2B, (\[1 — W]q | z;) (43)

and similarly for the other update rules.

6.5. X -constrained optimization using pq KL distance

The foregoing can be viewed as modifying the ¢p KL distance and associated descent
schemes to enforce our constraints. This raises the obvious idea of trying to enforce
such constraints by appropriately modifying pg KL distance and the associated
adaptive importance sampling technique.

One way to do that is to simply multiply the target distribution p(x) = Fg(x) by
the windowing function W (z) discussed above (e.g., multiply the Boltzmann distri-
bution, Fg(z) = p®(z), by W(x)). We then conduct adaptive importance sampling
as usual, only using that product in place of Fz throughout. The usual guarantees
go through. For example, if there is a single (constrainted) global minimum of G,
7', and if the importance sample estimates of the marginals are exact, then that
constrained minimum will be found in the limit that Fg(z) — é(x — ') (e.g., in
the limit that 8 — o).

Note that such windowing of Fz by W is usually of no help for gp KL distance.
That’s because after that multiplication the term E(G | x;) arising in the update
rules based on gp distance gets replaced by E,(G + In[W] | z;). This is undefined,
i.e., infinite, if you do not have a ¢ whose support is restricted to the allowed . Yet
typically, that is precisely the situation early in the optimization process.

7. Uncountable X

There are several circumstances in which naive empirical averaging of Monte Carlo
samples to estimate update terms of the form E(F¢ | x;) will not work. For example,
consider the simplest situation, in which we have a finite number of agents and a
finite move space for each agent. Even in this situation, if there are not enough
Monte Carlo samples, it may be that for some potential move of some agent there are
no instances in any of the Monte Carlo samples (in any of the blocks) in which that
agent made that move. In that case, we cannot use empirical averaging to estimate
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the associated E(Fg | x;). As another example, say we have a large (but finite)
number of Monte Carlo samples, but some agent has an uncountable number of
potential moves. Then that agent will have no samples for almost all of its potential
moves.

7.1. Ezxploiting supervised learning

All of these problems can be addressed by exploiting the fact that we are working
with a product distribution, in concert with the techniques from the field of su-
pervised learning techniques (i.e., classification and regression) [31], which concern
precisely the issue of estimating E(Fg | ;) from a finite set of Monte Carlo samples.
As an example, consider the first problem case mentioned above, in which there a
finite number of agents all with a finite number of potential moves, but we have
too small a set of Monte Carlo samples to have samples of all moves for all agents.
For this scenario each agent ¢ must estimate E(Fg | z;) for all z; using a “training
set” of Monte-Carlo-generated (z;, Fz) pairs that does not extend over all x;. This
is a standard problem in supervised learning [31]. Often it can be addressed by
extrapolating from those z; which did occur in the training set to infer estimates
of E(Fg | x;) for the x; that did not. Those estimates can then be used to form the
updates for those non-arising x;. The simplest version of such a scheme is to set
E(Fg | x;) for an unsampled x; to the average of the F; values in the training set.®
However often more sophisticated schemes can be used, based upon prior knowledge
concerning the likely dependence of E(Fg | z;) on x;.*

Similar techniques can be used even when the x; are uncountable. Moreover,
in general a supervised learning fit to the Monte Carlo data is parameterized by
a finite set of numbers, and therefore for a finite number of agents those fits can
be stored in a finite computer, regardless of the cardinality of the move spaces of
the agents. However for uncountable move spaces we have the extra problem of
how to store, update, and sample ¢, which is now a density function rather than a
probability distribution.

Fortunately, given the regression E(F¢ | x;), there are several ways to update
and sample ¢(z) without ever explicitly storing the values of ¢(z) for all possible
x. By using such sampling schemes in concert with the regression scheme, we can
implement Monte Carlo updating for all of the problematic scenarios described
above. As outlined in this section, the key is to write the update rules in terms of
multiplicative update ratios giving the new ¢ in terms of the old one, as in the list
presented above.

SIn gradient descent updating this means that g;(z;) for an unsampled x; does not change at the
update step.

*In such scenarios the data in the training set should not only be used to form estimates of
E(Fg | z;) for those z; that don’t occur in the training set; it should also be used to refine our
estimates for those x; values that do occur in the training set.



December 26, 2006 16:45 WSPC/INSTRUCTION FILE acs.fixed.2

Advances in distributed optimization using probability collectives 37

7.2. Uncountable x and finite parameterizations of q

For all of these update rules listed above, when x; is a compact subset of a Euclidean
space, one can still numerically perform the update in the conventional way if
the associated probability density function is replaced by a (finite-dimensional)
parameterization of it. The simplest way to do that is, in essence, by binning x;.
This means that agent 7 now has a finite set of moves, one for each of its bins. The full
density function is parameterized by the real numbers giving the probabilities agent
1 assigns to each of its bins, according to some pre-set rule. One example is where
the probability density function has uniform density in each bin (as in Reimann
integration). Another is where the density function is linearly increasing/decreasing
across each bin, in such a way that the density function is everywhere continuous
(as in the trapezoidal rule for integration). Formally, such binning schemes are
semi-coordinate transformations [9, 11].

With such a scheme, one first applies supervised learning techniques to the
Monte Carlo samples to determine the regression E(Fg | ;). For each bin j, having
borders a; and b;, one then numerically computes two integrals:

b]‘ bj
/ dz; ¢t (z;)E(Fg | z;) and / dz; gt (z;).

The ratio of those two integrals determines the time-t expected value of F condi-
tioned on z; being in bin j. (For bins that are thin enough on the scale of variations
in the regression and/or ¢!(z;), these integrations can be replaced by simply eval-
uating the integrands at the centers of the bins.) This then gives the expected Fg
conditioned on z; being in bin j for all bins j. This is precisely what is needed to
update those bins’ probabilities, according to whichever of the update rules listed
above one is using.

Note that this scheme can be done even when the number of bins is far larger
than the number of Monte Carlo samples. This contrasts with the case of estimating
the conditional expectation value of Fg given bin j based only on averaging of all
the Monte Carlo samples that fall in that bin. Intuitively, using regression allows
samples from neighboring bins to be used to help form the estimate.

While some binning schemes can be relatively sophisticated [9], sometimes it
would be advantageous to use a different parameterization. Often this can be done
in a way that replaces the regression algorithm with a density estimation algorithm,
using the usual Bayesian equivalence of regression and density estimation. For ex-
ample, choose the masking function Fg(x) in Eq. 33 to be ©(K —G(z)), Evaluating
such an update based on a set of Monte Carlo samples can be done with conven-
tional probability density estimation algorithms [31]. One simply collects the subset
of the samples for which G(z) < K, and runs the density estimation algorithm on
those points to estimate the density at x;.

Intuitively, in this approach the Monte Carlo samples encode the probability
density function ¢;. For a smooth density estimator, this scheme will also ensure
gi(xz;) # 0 Vz;, thereby mitigating the problem that a statistical fluctuation of
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never picking x; in some Monte Carlo block would guarantee it is never picked in
the future. Similar schemes can be used for non-step function choices of F. For
example, one can use the value Fg(z) for each 2 in the Monte Carlo sample as a
weighting factor for that sample in a kernel density estimator.

7.3. Parameterless sampling via Sample Correction

One problem with parametric schemes like these is that since ¢ is given by a set of
explicitly stored real numbers, one is always limited in how finely one can capture
q by the finiteness of one’s computer’s memory. More importantly, if one has many
parameters (to capture ¢ with high accuracy), then updates can be computationally
expensive, since each parameter has to be updated in each iteration. For example,
with binning, one has to go through the update rule for each bin.

Alternative schemes use the regression E(F¢ | ;) to apply any multiplicative
update rule for uncountable x without any finite-dimensional parameterization of g.
With such schemes, in each step the full density function given by an uncountable
number of real numbers is implicitly updated (e.g., via gradient descent). However
that density is never explicitly represented. Instead, all we ever explicitly do is sam-
ple it, potentially evaluating it at a finite number of points to do so. Intuitively, via
our regression, the Monte Carlo samples themselves serve as our “parameterization”
of ¢(x).

Define R, ; = max,,7q,:(x;). Then for any ¢ > 1 we can generate a sample from
q! if we can implement the following three-step sample-correcting procedure based
on subsampling:

1) Sample from qf1 to get a point x;.

2) Toss a coin with probability of heads

Tqt—1 z(xz)
. 44
th—l,i ( )
(The reason for dividing by R,-1, is to ensure this probability of heads never

exceeds 1.)

3) If the coin came up heads, keep our z; as the desired sample of ¢!. Otherwise
return to (1)."

This scheme is an instance of sample correction, which is discussed in a more
general context in the next section. Note that this particular type of sample cor-

"This is essentially importance sampling. Formally, since this three-step sub-sampling scheme is a
stochastic process, it generates z;’s according to some distribution 7(z;). So to prove that m = qﬁ,

tlp
it suffices to note that for any two values x;, ], :E:Z; = Z%Ezzg
appendix.) QED

(This is proven formally in the
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rection will also work if we can only evaluate the values r4:-1 ;(2;) up to an overall

proportionality constant, so long as R,:-1; is redefined to include that constant.

q

Similarly the scheme will work so long as R,:—1 ; in step (2) is replaced by any fixed

q
quantity that is bounded below by the actual Rg:-1 ;. So in practice we can set that
value in step (2) to some small factor greater than 1 multiplied by the maximal
value of over some set of values « of rye—1 ;(2}). Accordingly we can sample ¢" if we
can sample ¢' !, can evaluate A X r,-1 ;(z;) for any particular z; and fixed (though
perhaps unknown) constant A, and can evaluate an upper bound on A x Rg-1 ;.

Performing our subsampling procedure for all agents will give us a sample of the
joint distribution ¢*. We then add that joint sample to the training set and form
a new regression (to be able to calculate 74 ;(z;)). If we need to do so to ensure
the quantity in step (2) never exceeds 1, we then use that new regression to find an
upper bound on R, ;. This allows us to repeat the three steps, and thereby form
the next update to q. Generalizing, if we set ¢' to some easily sampled distribution
(e.g., the uniform distribution), and can always perform the stipulated regressions,
then with our subsampling procedure we have an iterative algorithm for sampling
¢'(z) =TI, ¢! (z) for all t. Then, at the end of the run, we use the final joint samples
as guesses for the solution x to our optimization problem.

Say we are at iteration ¢, having formed samples of all of the qf/ for t' < t via
the subsampling procedure, and therefore having been able to evaluate R i and

52

Tt ;(x;) for any z;,t" < t. To employ the precise scheme outlined above to sample q
we would first sample ¢}, and then send that sample through ¢ successive stochastic
keep/reject steps. The probability of a rejection at each step in that chain is given
by how small the ratio T“;{q%(z is for typical z; generated by sampling ¢} . For large
enough ¢, even if the rejection probability for each step in the chain is small, the
probability of a rejection somewhere along such a chain — followed by starting all
over with a new sample of ¢ — may be quite high. Accordingly, this subsampling
procedure might take a long time to actually generate the desired sample of ¢!.

As an alternative, note that by hypothesis we can evaluate r . ;(z;) Va;, t' <t,
up to a t’-dependent overall proportionality constant, which without loss of gener-

ality we set to 1. So write

t—1
(i) = qf (@) [] rge (i)

t'=1

As long as we are sure that the product on the righthand side is finite and never

negative, we can employ a modified version of our sub-sampling procedure. To do
this define

a({q" ¥ <tha) = [] roe (@) (45)

Assuming we can evaluate 7 ,(z;) V,z;,t' < t, we can evaluate cl-({qt/ <
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t}, x;) Va;. Next define
Ci{d" +t' < t}) = max,,c;({¢" : t' < t}, ;). (46)

In analogy to the earlier case, we can form an estimate of a (conservative lower
bound) on C;({q" : t' < t}) by evaluating ¢;({¢" : ¢’ < t},z;) for many z;.

As before, the first step of our procedure is to sample ¢} to produce a suggested
sample of ¢!. We then accept that suggested sample with probability

Ci({qt/ < t}, J}i)
Cil{g¥ -t/ <t}) ’
resampling ¢} if we reject the suggested sample. This gives us our desired sample
of q!(z;). Doing this for all ¢ then gives our sample of ¢'(x).
Exactly as before, such a sample of ¢* can be combined with our previous Monte

Carlo samples to provide a training set for a supervised learning algorithm that
forms a regression Egt(Fg | z;). We can use that to evaluate ry ;(x;) for any a;,
up to an overall proportionality constant. So we can evaluate the product ci({qt/ :
t' <t+1},x;) for a large number of x;, and thereby estimate (an upper bound on)
Ci({g" : t' < t}). This then allows us to generate a sample of the next distribution
¢!t by using subsampling. So we again have an iterative algorithm. However this
way one avoids the need for more than one keep/reject step in forming the sample
of ¢* for any t. (The price paid for this is a more expensive numerical evaluation of
the associated max.)

7.4. Including density estimation

A remaining potential difficulty is that as ¢! gets more and more peaked, we might

NP )
7céfg{qjii;) will be
very small for almost every point formed by sampling ¢i. More generally, if we
are only generating candidate x; by examining points generated by sampling ¢},
then we won’t have reduced the overall computational burden in finding = with low
G values compared to the simple process of sampling ¢i without any subsequent
subsampling.

get a lot of rejections when we subsample, since the ratio

We can address this problem by periodically using a density estimation algorithm
to produce an estimate of the current distribution, an estimate that is easy to
sample. However we don’t directly use that estimate in our algorithm in place of ¢,
since it won’t exactly equal ¢! in general. Instead, we use it as a proposal distribution
in importance sampling from ¢!. In essence, we use the same keep-reject procedure
as before, only with a non-uniform distribution generating samples, and doing so
after g has already started evolving.

More precisely, at time step ¢, say we run a density estimation algorithm on our
Monte Carlo samples to form a density ¢!(z;) that both can be easily sampled and
with high probability is a good approximation to q}. Write

gt () o G4 (xs) di({q” =t <"}, 4L @) (47)



December 26, 2006 16:45 WSPC/INSTRUCTION FILE acs.fixed.2

Advances in distributed optimization using probability collectives 41

where
1 t . "
' R _ g (xi)ei({g" ot <t} my)
di({qt < t”}, qz?’ 1:1-) = ij(.%’l) . (48)
Then define
Di({q" ' <t"},q%, 1) = max, d;({q" <t < t"},Gt,2). (49)

As usual, without loss of generality we can ignore any overall proportionality con-
stants in the evaluations of ¢f(z;) and/or ¢;({¢" : ' < t"},z;) (so long as the same
constants appear in the evaluation of Di({qt/ (' < t"},4t,4)), and can replace the
constant D;({q" : ' < "}, G, i) with an upper bound on it.

In the first step of the new version of our subsampling procedure — when we
“+1(2;) — we start by generating a sample of g (;).
(In the original subsampling procedure the analogous step was to sample ¢! (z;).)
We then keep that sample with probability

di({q" -t <t+1},¢, )
Di({q" -t/ <t+1},4%,40)’

forming a new sample if the suggested sample is rejected. In this way we can exactly

want to generate a sample of ¢

sample the density function ¢!(z;). Moreover, assuming our density estimate is
reasonably accurate, and that our upper bound on Di({qt/ ct <t+1},4t,4) is not
too much greater than the actual value, the ratio giving our acceptance frequency
will not be too small. We then proceed analogously for times t” > ¢ + 1.

In practice, we may want to exploit algorithms that combine the generation of
¢! from the training set and the sampling of that distribution. As an illustration,
say x; is the set of real numbers between 0.0 and 1.0, and write the cumulative
distribution function of ¢! as CDF,:. Then one way to form a sample of qt(z;) is
to generate a point & by uniformly sampling [0.0, 1.0], and then return the value
[C’Dqu]‘l(fi). This suggests an algorithm in which we first use our training set of
Monte Carlo samples to form C/'D\qu, an estimate of CDFql;. We then sample [0.0,
1.0] uniformly to produce &;, and return the value [C’DFQE]*(&).

As an example of a rough, fast way to do this, say there are N separate z; values
in our training set, the set of those values being written as {z7}. Define I(z) as
the interval of all real numbers that are closer to xﬂ than to any other training set
element. Also define the function int(z;) as the greatest integer below ;. So if &
is a real number chosen by randomly sampling (0, 1.0), int(N§;) + 1 is a uniformly
random choice of one of the IV elements of the training set. Using this, our algorithm
for sampling (an estimate of) ¢! (z;) would consist of the following steps:

A) Sample [0.0, 1.0] uniformly to generate &;, and then set j = int(N¢;) + 1.

B) Sample uniformly from within the interval I(z7).
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Intuitively, under this scheme the density estimate we sample is uniform within
each interval I(z?) (one such interval for each j). The value of the estimate in
each interval I(z7) (one such interval for each j) is proportional to the inverse of
the width of the interval, |I(z7)|, with the same proportionality constant for all
intervals. So where training set elements are dense, interval widths are small, and
density estimates are large. Similar schemes can be used when z; is more than one-
dimensional, for example by substituting Voronoi cells about training set x; values
for intervals about them.

Note that we actually have far more information about the underlying density
to use in forming our estimate than just the x; values in the data set: we have
the associated values of the actual density at those points, {g;(x;)}. Indeed, one
could imagine forming our density estimate without using a conventional unsuper-
vised learning density estimator at all, but instead a supervised learning regression
scheme. Such a scheme would form an x; — ¢;(x;) “fit” to the {(zi,qi(z;)} pairs
comprising our data set, constraining the fit to be nowhere negative and integrate
to 1. However using regression this way also doesn’t fully exploit our information:
it ignores the fact that the positions {z;} were formed by sampling g;.

A proper Bayesian approach would exploit both sets of information. However
there are alternative, less formal ways to exploit both sets of information. An ex-
ample is a modification of the (A-B) algorithm presented just above. In this modifi-
cation we still have our density estimate be constant within each interval I (xf ), but
change the value of that estimate to incorporate the (known) density value at xf ,
i(z?). Then rather than have the density within each interval I(a) proportional

to 1/|I(x])], we set it to be proportional to \/q;(x?)/|I(x})|. (The square root is
motivated by considering what happens if ¢;(z;) is multiplied by some constant k
across a certain region, which would mean that the training set elements will, on
average, be spaced k times more densely in that region.) A similar modification
would instead replace 1/|I(x)| with w Note that in either modifica-
tion we must solve for the proportionality constant, unlike in the original scheme.
This is straight-forward however.

Say we are able to sample ¢!(z;) exactly, either by using subsampling of points
generated from ¢} or by using a density estimate ¢¢. Then we can use the original
subsampling procedure recounted above to sample qf“(mi) = ¢! (@;)rqe ;(z). Simi-
larly, to sample ¢! (z;) for subsequent T' > t + 1, we can use the modified version of
the subsampling procedure based on a product of r .i(w:)’s. In the current context,
this means we sample ¢! (z;), and then keep/reject those samples according to the
ratios

a({g" :t <t <T}, )
Ci({g" -t <t/ <T}) ~
Once T is so much larger than ¢ that we start getting a lot of rejections, we can
rerun our density estimation algorithm.
Finally, while we lose formal bounds in doing so, we may elect not to use ¢;’s




December 26, 2006 16:45 WSPC/INSTRUCTION FILE acs.fixed.2

Advances in distributed optimization using probability collectives 43

that reflect products of 7;’s all the way from time 1. Say we make a density estimate
at some time, and it is a particularly accurate one. Then we may want to start the
entire subsampling procedure afresh, using that density estimate rather than the
uniform distribution as our initial distribution. This would mean that each ¢; only
reflects the product of r;’s for the times since that most recent density estimate.
In essence, in this variant, all of our work up to the formation of that most recent
density estimate was simply a procedure for finding a starting distribution for the
subsampling procedure, a starting distribution that (hopefully) has a low value of
our Lagrangian.

7.5. Performing the needed evaluations

Say we are at the t’th iteration, and assume we already have a full Monte Carlo
sample of g*~!. We need to be able to evaluate rqt-1 ;(x;) to form a sample of q" using
our subsampling procedure. We can do this for any of the update rules listed above,
so long as can calculate In(¢) ' (2:)), Eg—(In(Fg) | i), Ep—1(In(Fg)), S(gi™ ),
[dx; Eg-1(In(Fg) | ;), and [ da; In(qi " (2;)). The first two of these depend on
x;, and the last four are averages over all x;."

All of these terms have to be calculated to update ¢ even if one doesn’t use
subsampling. In particular this is the case if one converts a scenario of infinite z’s
into one where each agent has a finite number of moves by dividing the range of
each x; into a large number of bins, and then uses conventional (non-subsampling)
PC. The difference is that with subsampling we cannot just look up ¢;(x;) values.”

We can perform our needed evaluations as follows:

i) We can evaluate ¢!~ ! (x;) Va; by direct expansion. It is a product of the values of
7 (%) for t' <t with the value of a starting density at x;, and by the inductive
hypothesis we can evaluate all of those values. That takes care of the first term.

ii) As usual, to estimate Ep-1(In(Fg) | x;), apply any handy supervised learn-
ing algorithm (e.g., Gaussian nearest neighbor averaging) to the training set of
(zi,In(Fg(x))) pairs given by the Monte Carlo samples of ¢'~1.

iii) Given our supervised learning algorithm, use numerical integration to estimate
[ dz; Eje-1(In(Fg) | @;). In practice, if the integrand is quite peaked, it may make
sense to assist the integration by first using a density estimation algorithm to form
an easily sampled estimate of ¢! (z;). Numerical integration via importance sampling

VThose last four arise in calculating the additive const term in one or the other of the update rules,
and where needed implicitly assume a priori bounds on their integrals. Note that any multiplicative
const terms are irrelevant, since as described above they cancel out in the subsampling.

W An additional difference is that with subsampling we may need to do periodic density estimation,
to keep the rejection frequency from growing too large. But that’s not necessary just to perform
a particular update at the end of a Monte Carlo block.
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can then be used with that estimate as the proposal distribution to do the integra-
tion. Assuming the peaks of ¢! (z;) roughly match those of Ey—1(In(Fg) | 2;), such
integration should be relatively efficient.

Given our assumed ability to evaluate ¢/~
supervised learning algorithm and numerical integration to estimate Eg -1 (In(Fg)),
again using density estimation if need be. Alternatively, we can estimate

Eg -1 (In(Fg)) simply by averaging the values in the training set of In(Fg) .*

(z;) Yx;, we can similarly use our

iv) Similarly, we can use numerical integration to estimate [ dz; In(q!~'(z;)) and/or
S (q; _1). A simpler approach to estimating the entropy, analogous to the averaging
process of step (iii), is to simply estimate the entropy as the empirical average of the
values of In[g;(x;)] over the Monte Carlo samples. Similarly, an importance-sample

estimation of [ dx; In(q!~!(x;)) would be given by the empirical average of the

3

values of (In[g;(x;)])/q:(x;).

Doing all this, we can evaluate every term that arises in our subsampling pro-
cedure. This allows us to sample ¢'. For the next iteration, this ability to sample ¢
is used again, this time to do part (1) of the subsampling procedure for generating
samples of ¢*1. To perform parts (2) and (3) we need to evaluate the update ra-
tio, and therefore must be able to perform (some subset of) steps (i) through (iv)
above. Since by hypothesis we can evaluate ¢*~!(z) for any =, and can evaluate the
update ratio r4e-1 ;(;) (up to irrelevant proportionality constants) for any such x;,
we can evaluate ¢'(x) for any z. Therefore we can perform step (i). We can also
perform steps (ii) through (iv) using the Monte Carlo samples of ¢*. Therefore we
can perform parts (2) and (3) of our subsampling procedure. So we can generate a
sample of ¢tt1.

7.6. Bootstrapping to use all the data and practical issues

In practice we will often not perform the updating exactly as specified above. It
may be unwieldy to work with distributions whose updating history all the way
back to the uniform distribution is maintained. In such a situation, if we think
that the density estimate is a reasonably accurate approximation of ¢, then it
may make sense to “restart the entire process” with that estimate replacing the
uniform distribution. In other words, we would set ¢ back to 0, but rather than
use the uniform distribution as our initial distribution, we would use our current
density estimate. In general we would expect that updating distributions starting
from that density estimate should outperform updating distributions from a uniform
distribution. On the other hand, updating from ¢* should perform even better still.
So clearly we would not want to perform this kind of restarting from the density
estimate too frequently.

*It probably makes most sense to do this if our supervised learning algorithm is one for which
we’re a priori guaranteed that such averaging gives the same answer as numerical integration.
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A more important modification of the subsampling procedure addresses the
fact that as recounted above, it throws out many of the Monte Carlo samples.
This clearly is wasteful. There is also an intuitive problem with it; if the random
keep/reject steps had come out differently, then a different subset of the Monte
Carlo samples would be kept. This suggests that there is nothing special about one
such subset rather than another one.

The most straightforward way to address these concerns is to bootstrap the
keep/reject step. In this modification one makes many passes through the Monte
Carlo samples, each time forming a separate set of (random) keep/reject decisions,
and forming a separate estimate of how to update the distributions. Our final esti-
mate is then given by averaging those separate updates.

In some situations we can actually go to the limit of an infinite number of passes
in closed form. As an example, consider the case where X contains a finite number
of points. Say that the density estimator for a single bootstrap pass for each agent ¢
works by forming the frequency counts with which the values x; arise in the subset
of the Monte Carlo points kept in that pass. Then because frequencies converge to
averages, averaging the density estimate of an infinite number of passes will produce
an estimate where g;(z;) is set to the (average over the samples) keep/reject ratio
associated with move z; in the Monte Carlo samples. Intuitively, that (average)
ratio serves as a weight in the density estimate.

8. Beyond Product Distributions: Sample Correction

An important subsampling scenario is where one uses a single agent. In this situ-
ation product distributions may still arise — in the density estimation algorithm.
Alternatively, other graphical models besides product distributions can be used.

However many agents it is used with, subsampling is an example of a general
class of schemes that replace the usual update rules with sample-corrected ver-
sions. This term refers to algorithms for forming a sample of a specified distribution
that is hard to sample directly (e.g., the distribution given by an application of an
update rule). These algorithms start by forming an IID sample of some different
proposal distribution. They then stochastically “correct” that sample to get a sam-
ple of the specified distribution. That corrected sample may then be used to update
the proposal distribution, though this isn’t always necessary.

This section first discusses other schemes for sample correction besides subsam-
pling, as well as how sample correction can be used even when has only a single
agent. It then discusses single agent subsampling, and many of its advantages, e.g.,
how it can be used to form IID samples of an arbitrary provided distribution.

8.1. Sample correction without subsampling and general comments

As mentioned above, there are numerous schemes besides subsampling that do sam-
ple correction. As an example, say we are given a desired distribution p(z) and a
proposal distribution p(z, z’). Then the Metropolis-Hastings algorithm [13] is a way
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to use p to produce a random walk of which, in the ergodic limit, is an IID sample of
p. To use this algorithm one only needs to be able to sample p(.,z’) for any =’ and
to evaluate p(x) at any z. In particular one does not need to explicitly store p for
all z. Just as with subsampling then, we can use the Metropolis Hastings algorithm
with any of our update rules to generate a sample of the updated distribution, so
long as we can evaluate all the terms in the update equation. This allows us to
produce the desired sample of the updated distribution.

There can be drawbacks to such alternatives however. In particular, the theory
underpinning the Metropolis-Hastings algorithm assumes the proposal distribution
never changes in time, an issue that can be addressed only with some difficulty
[13]. In addition, subsampling has some advantages absent from these alternative
schemes (e.g., the use of the constant k to determine the degree of sample correction,
discussed below).

However it is done, sample-correcting the update rules may be helpful even when
the space of possible x is finite. For example, say the number of possible z; is so
large that there are many values z; = a that never occurred in the most recent
block of Monte Carlo samples. So one way to fill in E(G | z; = a) for those values
is to use supervised learning to generalize from the pairs {(z; # a,G(x)} that did
occur in the data from that block. At the end of every such block, conventional
(non-sample-correcting) approaches would require that for every a we evaluate and
then update ¢;(a). This is not needed if one uses sample correction however.

8.2. Single agent sample correction

Sample correction can be used even without product distributions, simply by having
the number of “agents” equal 1, with the full joint variable = being that single agent’s
move. This can be done for either finite or infinite number of possible z’s.

In the scenario discussed above where there are multiple agents, the primary
purpose behind having Monte Carlo blocks of multiple timesteps is to generate
sample data for the agents to input into supervised learning algorithms to estimate
their distributions E(Fg | ;). (This is step (ii) in Sec. 7.5.) Those estimated dis-
tributions are then used to help set the update ratios, which in turn govern the
sample correction for the next Monte Carlo block.

However with a single agent, to evaluate update ratios one doesn’t need to
estimate functions like “E(In(Fg) | ;)”. Such estimates of values of functions are
replaced with values In(Fg(x)), which are measured exactly, with no associated
estimation error. So there is no need for supervised learning algorithms to acquire
such conditional expectations. In general though we still need to use statistical
inference to estimate quantities like [ dz In(Fg(z)) (which is the single-agent version
of the more general quantity [dz;E,(In(Fg) | z;)) and E,(Fg). We also need
such inference in general to estimate the entropy S(g) and the related quantity

[ d In(q(x)).

A major potential advantage of using a single agent arises when there are strong
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couplings between the x; in G. As an example, consider finding the product distri-
bution [], ¢;(x;) that best approximates some distribution p(z) o e~ %@ Strong
couplings in G may mean that the best possible such product distribution approx-
imation is not very good. So if one’s goal is to form an accurate approximation of
such a p, using product distributions has inherent limitations. Similarly, if one is
using a product distribution, strong couplings in G can cause difficulties in attaining
the goals behind the other update rules discussed above.

To address such difficulties while still using multiple agents one can try using
graphical models of ¢ that are higher order than product distributions. One can
also approximate terms in the Lagrangian as in the Bethe approximation, etc. Such
schemes typically obviate many of the computational advantages inherent in prod-
uct distributions however. Another approach, which maintains the advantages of
a product distribution but can accommodate strong coupling, is to use a semi-
coordinate transformation [9, 18]. Such transformations are involved and subtle
exercises however.

As an alternative, one can use sample correction with a single agent. In this
approach, instead of addressing the couplings in G by using a graphical model as
the approximation to e~¢() they are addressed in the sample correction’s density
estimation algorithm (distribution estimation algorithm, in the case of a finite x
space). In general though, it is very straightforward to incorporate couplings be-
tween the input variables (i.e., the z;) in density estimation algorithms. This is in
contrast to the case with graphical models.

Going to a single agent doesn’t affect the need for periodic density estimation,
to keep the rejection frequency in the subsampling from getting too large. (Similar
difficulties arise with other sample-correction algorithms.) The major potential dif-
ficulty for using a single agent and sample correction is that it may be difficult to
generate an easily sampled density with a not too large rejection frequency. How-
ever consider the case of a finite space of possible x. In this scenario at the end of
Monte Carlo block ¢ one can form a product distribution ¢(x) = [, ¢i(x;) where
the values of each ¢;(z;) are estimated by frequency counts on the (kept) samples.
Those samples were formed by exact sampling of p*(z). Accordingly the g;(z;) are
unbiased estimates of the marginals of pf(x). In turn, the product of marginals is
exactly the product distribution with minimal pg KL distance to p*.

So in this scheme each g; in the density estimate is set exactly as in the conven-
tional many-agent PC approach of minimizing pg KL distance to a target distribu-
tion. However now that density estimate of p’ is corrected via sample correction.”

Note how much the subsampling approach simplifies in this scenario. Typically
the updating of the density estimate is all that changes as the algorithm gener-
ates more data. There is no computational sense in which one updates p’ between
updates of the density estimate; one is simply generating more samples.

Y1t is illuminating to compare this scheme to other schemes that interleave keep/reject steps and
multi-agent updating of product distributions, e.g., those described in Sec. 3.1.
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If the subsampling in this scheme results in a high rejection frequency, then our
q is a poor fit to p’. In such a case the conventional PC approach with many agents
would be expected to give a product distribution that poorly approximates the
target distribution. Here that shortcoming of a poor approximation doesn’t hold;
instead though one has the shortcoming of many rejections in the subsampling, and
therefore must update the density estimate.

Note that with subsampling there is a natural way to control the degree to which
we’re using a (sample corrected) single agent versus a set of independent (product
distribution) agents. This is done by multiplying every rejection probability by a
constant k € [0, 1] before deciding whether to keep or reject a candidate sample
point. £k = 1 is full sample correction of the update rules, and £ = 0 corresponds
to no correction at all, i.e., to just using the proposal distribution. In particular,
consider the case where there is a single agent but the proposal distribution is a
product distribution. For this case kK = 0 means the update rules are being used as
the conventional manner to update product distributions. In contrast k = 1 means
we are using them to update the single agent distribution.

To illustrate this, recall the update rule for iterative focusing of ¢ by minimiza-
tion of pq distance and a Heaviside focusing function, ©(G < K). For this focusing
function the update rule Eq. 33 reduces to ¢/™(z;) o G(x; | G < K), where for
simplicity we can take § = ¢*, the current distribution. In conventional iterative
focusing based on this rule we form a set of samples of ¢*. Of those we only keep the
ones with G < K. We then use those kept samples to estimate each of the qf+1(xi)7
using regression or (in the case of countable ) simple bin-counts.

Now consider how things change if we use subsampling based on a single agent,
for the same update rule of Eq. 33. Now our perspective changes; we view the
product distribution at time ¢ as ¢’, our density estimate of the actual desired
distribution ¢. In other words, it is now a proposal distribution. We start by forming
a sample z of this distribution, and reject z if G(z) > K, just like in conventional
iterative focusing. Next though we flip a biased coin, with a bias based on the ratio
Gt (x)/q*(x). We then keep x only if that coin comes up positive. Then we restart
the process to get a new sample point. After collecting a large number of points
this way, we use them to update our density estimate, i.e., to estimate each of the
qf“(xi). We do this using the exact same regression or bin-counting scheme used
in conventional iterative focusing.

The only difference between this and conventional use of iterative focusing with
product distributions is that with subsampling, we interject a step, of flipping a
biased coin. Accordingly, we can multiply the rejection bias of that coin by some
factor 7 to tune between the two schemes. 7 = 0 corresponds to conventional itera-
tive focusing, and 7 = 1 is subsampling. Intermediate 7 trade off the efficiencies of
the two algorithms.

Note that with a single agent the Maxent Lagrangian (for example) is a convex
function of one’s distribution. Its minimum is interior to the feasible region, lying
exactly at the desired p. This provides formal guarantees that are absent if one does
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not use a single (sample-corrected) agent. In addition the distribution that “best KL
approximates a (distribution) function of G” is an exact fit to that function. This
is true whether one uses ¢p or pg KL distance [8]. Accordingly “Nearest Newton”
is now exactly Newton descent, with no error introduced by a last step of setting ¢
to minimize the pg KL distance to the desired distribution. Moreover, many of the
other update rules now become identical. For example Brouwer updating becomes
the same as minimizing pg distance.

Furthermore, the fact that KL-based fits are exact with a single agent means that
by using a single agent the guarantees of Prop. 1 now apply to iterative focusing.
So we are formally guaranteed (up to sampling noise issues) that each iteration of
iterative focusing lowers F(G). (No such guarantees hold if one does not use sample
correction.)

Moreover, consider using a single agent and iterative focusing with a Boltzmann
focusing function. In this situation, the focusing step becomes identical to annealing
the temperature in the parallel Brouwer update rule; iterative focusing update rules
becomes identical to update rules based on the Maxent Lagrangian. Note that this
algorithm relies at its core on forming samples from the proposal distribution g.
There is no sense in which this scheme could be used without such samples, by
evaluating expressions in closed form and using that to update some variables. This
contrasts with direct application of an update rule to an explicitly stored ¢, without
any use of subsampling. Such direct application of the update rules can theoretically
be done without any Monte-Carlo sampling at all. This is done by evaluating terms
like E(G | x;) directly, in closed form, from knowledge of ¢. (See [18] for an example
of doing this in practice.)

Finally, say we are given a distribution p*(z) that we can evaluate for any x
via a black-box algorithm of some sort. Say we want to form a set of IID samples
of p*. Traditionally one could use a scheme like Metropolis-Hastings to do this.
Subsampling with a single agent provides an alterative approach. This alternative
starts by defining G(z) = —In[p*(z)]. So p* is just a Boltzmann distribution over
values of G. Accordingly, if we could find a (single-agent) ¢ that minimizes KL
distance to a Boltzmann distribution over G for § = 1, and generate IID samples
of that ¢, we would have our desired IID samples of p*. This goal is exactly met if
we use subsampling with a single agent for an update rule based on KL distance
to a Boltzmann distribution, once that update rule reaches equilibrium for g = 1.
(Note that at that minimum the KL distance to the target distribution — which
happens to equal p* — is just 0.)

8.3. Bootstrapping with a single agent

Recall the discussion of forming an infinite number of bootstrap passes through
the subsampling procedure, discussed at the end of the previous section. In par-
ticular recall the discussion about that limit in the case of finite X. Note that if
we have a single agent, then that infinite-pass bootstrap procedure is exactly the
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same as adaptive importance sampling. The ¢ distribution in adaptive importance
sampling is the density estimate ¢ in the subsampling procedure. So bootstrapping
is intimately related to the pq distance.

However whereas it isn’t clear how to do adaptive importance sampling for un-
countable X, we can always perform multiple bootstrap subsampling passes through
a (single agent) set of Monte Carlo samples, and then average the resultant distri-
bution updates. Similarly, we can perform multiple bootstrap passes through the
Monte Carlo samples when our updating of ¢ is based on a gp Lagrangian modified
to incorporate X constraints.

9. Conclusion

Recent work has shown how information theory extends conventional full-rationality
game theory to allow bounded rational agents. The associated mathematical frame-
work can be used to solve distributed optimization and control problems. This is
done by translating the distributed problem into an iterated game, where each
agent’s mixed strategy (i.e., its stochastically determined move) sets a different
variable of the problem. So the expected value of the objective function of the
distributed problem is determined by the joint probability distribution across the
moves of the agents. The mixed strategies of the agents are updated from one game
iteration to the next so as to converge on a joint distribution that optimizes that
expected value of the objective function.

In this paper a set of new techniques for this updating is presented. These and
older techniques are then extended to apply to uncountable move spaces. We also
present an extension of the approach to include (in)equality constraints over the
underlying variables. Another contribution is that we how to extend the Monte
Carlo version of the approach to cases where some agents have no Monte Carlo
samples for some of their moves, and derive an “automatic annealing schedule”.

Future work will involve a huge number of topics. Among them are computer
experiments investigating the many PC update rules and associated optimization
scenarios that have yet to be empirically explored. These include experiments on
constrained optimization and continuous spaces, as well as experiments when x
consists of a time-extended trajectory ( [8]), experiments on mixed data type move
spaces, etc. Other topics for research include modifications to PC to address restric-
tions on the private utilities of the agents arising due to communication limitations
(so that not all agents can evaluate the world utility G(z) in full for each Monte
Carlo sample z). Still others, closely related to economics, involve the dynamic de-
termination of hierarchical “optimal organization charts” governing the order and
groupings of agents that simultaneously update their distributions. (This is based
on partial parallel-serial Brouwer updating in particular [14].) Other future work
involves non-blind agents, i.e., agents that get more than just G(x) values back with
each Monte Carlo sample.
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Appendix A. Proof of validity of subsampling procedure

Subsample correction is essentially importance sampling. Formally, since the three-

step sub-sampling scheme is a stochastic process, it generates x;’s according to
some distribution. The following general result establishes that this distribution is

the same as ¢

t—1.
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Theorem 1. Let 7y be the stochastic process of forming a single sample from the
distribution D(x), and then keeping it with probability
[p(z)/D()]

d(x) = —— (A1)
where M > maz, [p(x')/D(x")]. Consider IID repeating Ty until we generate a total
of k kept points. The probability that any particular set of k points in X are generated
by this process equals the probability that they are generated by k-fold IID sampling
of p.

Proof. By the definition of M, d(z) is a valid probability value for all z. So consider
the event of 77’s generating a particular point x and then keeping it. The probability
of this event is D(z)d(z). However this event is identical to the event of having 7;
generate a point it ends up keeping and having that kept point equal z. Accordingly,
for any x, 2,

P(7T; generates x | 7; keeps a point)  P(7; generates x,7; keeps a point)

P(7; generates a' | 7; keeps a point)  P(7; generates a/,7; keeps a point)

dw)D@) )
= d@)D@) ~ ) (4.2)

Therefore
P(7; generates x | 7T keeps a point) = p(x) Vz. (A.3)

Let 75 be the stochastic process of performing 77 once if the sample point is
kept, IID performing 7; twice otherwise. Then we have

P(7; generates z, T keeps a point) =
P(7; generates x | T keeps the first point ) x P(73 keeps the first point) +

P(7; generates x | T3 rejects first point and keeps the second) x
P(7; rejects first point and keeps the second) (A.4)

P(7; generates x | 77 keeps the first point ) x P(73 keeps the first point) +

P(75 generates x | T3 rejects first point and keeps the second) X
P(7; rejects first point and keeps the second). (A.5)
However
P(75 generates x | T3 rejects first point and keeps the second) = p(z), (A.6)

using the same kind of reasoning employed above to establish that
P(77 generates x | 77 keeps a point) = p(x). Therefore
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P(7; generates x, T3 keeps a point) = p(x) X
[P(T3 keeps the first point) 4+ P(73 rejects first point and keeps the second)].
(A7)
So using the same kind of ratio-based reasoning as in Eq. A.4,
P(7; generates z | T3 keeps a point) = p(x). (A.8)
By induction, we see that with the obvious definition of 7,,,

P(7,, generates x | 7, rejects the first n - 1 points and keeps the n’th point) = p(z)
(A.9)

for any n > 0. So define 7 as the stochastic process of IID repeating 7; exactly
as many times as are needed to get a single kept sample point. Then since the
probability that a point will eventually be kept is 1, P(7 generates x) = p(z).

Let 7’ be the process of IID repeating 7 exactly as many times as are needed
to get k kept sample points, {x; : ¢ = 1,...,k}. Since this is an k-fold IID sampling
of a process that generates points x; with probability p(z;),

P(T' generates {z;}) = p({x;}) (A.10)

V {x;}. This completes the proof that subsample correction generates an IID sample
of the target distribution. O

Note that the probability that 7; keeps a point equals [ dz d(x)D(X) = M~!,
So if we take M = max,[p(z')/D(2’)] exactly, that probability of keeping a point
is highest. In turn, that maximal probability is itself extremized when D = p. In
this case all points are kept — subsampling reduces to sampling of p.



